Mouse models Dotaz Zobrazit nápovědu
Cell, ISSN 0092-8674 vol. 129, no. 4, suppl. 2007
124 s. : il., tab. ; 28 cm
- MeSH
- experimentální nádory MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- Check Tag
- myši MeSH
- Publikační typ
- sborníky MeSH
- Konspekt
- Buněčná biologie. Cytologie
- NLK Obory
- onkologie
- biologie
- cytologie, klinická cytologie
Transgenní myši představují vyjímečně užitečné modely ke studiu funkce genů v kontextu celého organismu. Článek shrnuje hlavní přístupy používané při tvorbě různých typů transgenních myších modelů a diskutuje současné perspektivy výzkumu v této vědeké oblasti. Hlavním vědeckým cílem, jehož chce dosáhnou mezinárodní konsorcium uznávaných vědeckých institucí, je vyvoření komplexní virtuální encyklopedie funkcí savčích genů.
Transgenic mice are exceptionally useful models to study a gene's functions in a whole body context. This article summarizes the main approaches that are used to generate different types of transgenic mouse models and discusses current prospects of the research field. A major research goal, led through the efforts of an international consortium of recognized scientific institutions, is the creation of a comprehensive virtual encyclopedia of mammalian gene function.
Tooth number is abnormal in about 20% of the human population. The most common defect is agenesis of the third molars, followed by loss of the lateral incisors and loss of the second premolars. Tooth loss appears as both a feature of multi-organ syndromes and as a non-syndromic isolated character. Apart from tooth number, abnormalities are also observed in tooth size, shape, and structure. Many of the genes that underlie dental defects have been identified, and several mouse models have been created to allow functional studies to understand, in greater detail, the role of particular genes in tooth development. The ability to manipulate the mouse embryo using explant culture and genome targeting provides a wealth of information that ultimately may pave the way for better diagnostics, treatment or even cures for human dental disorders. This review aims to summarize recent knowledge obtained in mouse models, which can be used to gain a better understanding of the molecular basis of human dental abnormalities.
- MeSH
- abnormality zubů embryologie genetika patologie MeSH
- anodoncie genetika MeSH
- dentin abnormality embryologie MeSH
- fenotyp MeSH
- financování organizované MeSH
- fosfoproteiny genetika MeSH
- kostní morfogenetické proteiny genetika MeSH
- kostní morfogenetický protein 4 MeSH
- lidé MeSH
- modely u zvířat MeSH
- myši MeSH
- odontogeneze genetika MeSH
- parodont abnormality MeSH
- zubní sklovina abnormality embryologie MeSH
- zuby přespočetné embryologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- přehledy MeSH
2nd ed. 4 sv. (xvi, 326 s., [8] s. obr. příl.; xvi, 756 s., [4] s. obr. příl.; xvi, 791 s., [20] s. obr. příl.; xvi, 374 s., [4] s. obr. příl.) : il. ; 28 cm
- MeSH
- biomedicínský výzkum MeSH
- laboratorní zvířata * MeSH
- modely genetické MeSH
- modely nemocí na zvířatech MeSH
- myši * MeSH
- Check Tag
- myši * MeSH
- Konspekt
- Biologické vědy
- NLK Obory
- biomedicínské inženýrství
- biologie
- NLK Publikační typ
- studie
Kpoznání chování lidských leukemií se používají různé experimentální modely.Nicméně jde předevšímo modely in vitro, které sice poskytují kvalitní informace o buněčné a molekulární biologii, ale jsounedostatečné pro studium leukemií v celé jejich komplexnosti, a také pro studium experimentální léčbytěchto nemocí. Od konce šedesátých let je k dispozici athymická nude myš, která poprvé umožnilastudium xenotransplantovaných lidských leukemických buněk. V současnosti máme k dispozici několikmodelů, které umožňují analyzovat buňky lidské krvetvorby transplantované imunodeficitní myši.Cílem tohoto přehledu je diskutovat možnost využití myších modelů pro poznání lidských leukemií,zmínit jejich přednosti i omezení.
Experimental models of human leukaemias are used in attempts to reconstruct events that occur inpatients with this cancer. Although in vitro systems provide a wealth of information about the cellularand molecular biology of leukaemic cells, they are inadequate for studies that address the complexitiesof human leukaemia and experimental treatment of this disease. Since the late 1960s, athymic nudemice have provided an opportunity to study xenografted human leukaemia in vivo. Recently, thesuccessful engraftment of human haematopoietic cells into various immune-deficient mice offers anapproach to study human haematopoiesis and leukaemia. The goals of this review are to discuss howmouse models have been utilized to study human leukaemia, and to provide an assessment of thestrengths and limitations of mouse models.
This minireview briefly surveys the complexity of regulations governing the bone metabolism. The impact of clinical studies devoted to osteoporosis is briefly summarized and the emphasis is put on the significance of experimental mouse models based on an extensive use of genetically modified animals. Despite possible arising drawbacks, the studies in mice are of prime importance for expanding our knowledge on bone metabolism. With respect to human physiology and medicine, one should be always aware of possible limitations as the experimental results may not be, or may be only to some extent, transposed to humans. If applicable to humans, results obtained in mice provide new clues for assessing unforeseen treatment strategies for patients. A recent publication representing in our opinion the important breakthrough in the field of bone metabolism in mice is commented in detail. It provides an evidence that skeleton is endocrine organ that affects energy metabolism and osteocalcin, a protein specifically synthesized and secreted by osteoblasts, is a hormone involved. If confirmed by other groups and applicable to humans, this study provides the awaited connection of long duration between bone disorders on one hand and obesity and diabetes on the other.
- MeSH
- biologické modely MeSH
- energetický metabolismus MeSH
- financování organizované MeSH
- kosti a kostní tkáň metabolismus MeSH
- lidé MeSH
- modely u zvířat MeSH
- myši MeSH
- nemoci kostí MeSH
- obezita metabolismus MeSH
- osteoblasty metabolismus MeSH
- osteokalcin metabolismus MeSH
- osteoporóza metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- přehledy MeSH
Myeloproliferative neoplasms (MPN), are clonal hematopoietic stem cell (HSC) disorders driven by gain-of-function mutations in JAK2 (JAK2-V617F), CALR or MPL genes. MPN treatment options currently mainly consist of cytoreductive therapy with hydroxyurea and JAK2 inhibitors such as ruxolitinib and fedratinib. Pegylated interferon-alpha can induce complete molecular remission (CMR) in some MPN patients when applied at early stages of disease. The ultimate goal of modern MPN treatment is to develop novel therapies that specifically target mutant HSCs in MPN and consistently induce CMR. Basic research has identified a growing number of candidate drugs with promising effects in vitro. A first step on the way to developing these compounds into drugs approved for treatment of MPN patients often consists of examining the effects in vivo using pre-clinical mouse models of MPN. Here we review the current state of MPN mouse models and the experimental setup for their optimal use in drug testing. In addition to novel compounds, combinatorial therapeutic approaches are often considered for the treatment of MPN. Optimized and validated mouse models can provide an efficient way to rapidly assess and select the most promising combinations and thereby contribute to accelerating the development of novel therapies of MPN.