Endosome rupture enables enteroviruses from the family Picornaviridae to infect cells
Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
39511383
PubMed Central
PMC11543853
DOI
10.1038/s42003-024-07147-9
PII: 10.1038/s42003-024-07147-9
Knihovny.cz E-resources
- MeSH
- Cell Membrane ultrastructure virology MeSH
- Chlorocebus aethiops MeSH
- COS Cells MeSH
- Cytoplasm virology MeSH
- Cryoelectron Microscopy MeSH
- Endocytosis * MeSH
- Endosomes * pathology virology MeSH
- HeLa Cells MeSH
- Humans MeSH
- Macrolides pharmacology MeSH
- Picornaviridae Infections * virology MeSH
- Rhinovirus * genetics physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- bafilomycin A1 MeSH Browser
- Macrolides MeSH
Membrane penetration by non-enveloped viruses is diverse and generally not well understood. Enteroviruses, one of the largest groups of non-enveloped viruses, cause diseases ranging from the common cold to life-threatening encephalitis. Enteroviruses enter cells by receptor-mediated endocytosis. However, how enterovirus particles or RNA genomes cross the endosome membrane into the cytoplasm remains unknown. Here we used cryo-electron tomography of infected cells to show that endosomes containing enteroviruses deform, rupture, and release the virus particles into the cytoplasm. Blocking endosome acidification with bafilomycin A1 reduced the number of particles that released their genomes, but did not prevent them from reaching the cytoplasm. Inhibiting post-endocytic membrane remodeling with wiskostatin promoted abortive enterovirus genome release in endosomes. The rupture of endosomes also occurs in control cells and after the endocytosis of very low-density lipoprotein. In summary, our results show that cellular membrane remodeling disrupts enterovirus-containing endosomes and thus releases the virus particles into the cytoplasm to initiate infection. Since the studied enteroviruses employ different receptors for cell entry but are delivered into the cytoplasm by cell-mediated endosome disruption, it is likely that most if not all enteroviruses, and probably numerous other viruses from the family Picornaviridae, can utilize endosome rupture to infect cells.
See more in PubMed
Fendrick, A. M., Monto, A. S., Nightengale, B. & Sarnes, M. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch. Intern. Med.163, 487–494 (2003). PubMed
Norder, H. et al. Picornavirus non-structural proteins as targets for new anti-virals with broad activity. Antivir. Res.89, 204–218 (2011). PubMed
Alexander, J. P. Jr, Baden, L., Pallansch, M. A. & Anderson, L. J. Enterovirus 71 infections and neurologic disease-United States, 1977–1991. J. Infect. Dis.169, 905–908 (1994). PubMed
Tuthill, T. J., Groppelli, E., Hogle, J. M. & Rowlands, D. J. Picornaviruses. Curr. Top. Microbiol Immunol.343, 43–89 (2010). PubMed PMC
Rossmann, M. G. et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature317, 145–153 (1985). PubMed
Hogle, J. M., Chow, M. & Filman, D. J. Three-dimensional structure of poliovirus at 2.9 A resolution. Science229, 1358–1365 (1985). PubMed
Prchla, E., Kuechler, E., Blaas, D. & Fuchs, R. Uncoating of human rhinovirus serotype 2 from late endosomes. J. Virol.68, 3713–3723 (1994). PubMed PMC
Blaas, D. Viral entry pathways: the example of common cold viruses. Wien. Med Wochenschr.166, 211–226 (2016). PubMed PMC
Khan, A. G. et al. Human rhinovirus 14 enters rhabdomyosarcoma cells expressing icam-1 by a clathrin-, caveolin-, and flotillin-independent pathway. J. Virol.84, 3984–3992 (2010). PubMed PMC
Snyers, L., Zwickl, H. & Blaas, D. Human rhinovirus type 2 is internalized by clathrin-mediated endocytosis. J. Virol.77, 5360–5369 (2003). PubMed PMC
Hussain, K. M., Leong, K. L., Ng, M. M. & Chu, J. J. The essential role of clathrin-mediated endocytosis in the infectious entry of human enterovirus 71. J. Biol. Chem.286, 309–321 (2011). PubMed PMC
Madshus, I. H., Sandvig, K., Olsnes, S. & van Deurs, B. Effect of reduced endocytosis induced by hypotonic shock and potassium depletion on the infection of Hep 2 cells by picornaviruses. J. Cell Physiol.131, 14–22 (1987). PubMed
Pelkmans, L. & Helenius, A. Insider information: what viruses tell us about endocytosis. Curr. Opin. Cell Biol.15, 414–422 (2003). PubMed
Kumari, S., Mg, S. & Mayor, S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res20, 256–275 (2010). PubMed PMC
Schober, D., Kronenberger, P., Prchla, E., Blaas, D. & Fuchs, R. Major and minor receptor group human rhinoviruses penetrate from endosomes by different mechanisms. J. Virol.72, 1354–1364 (1998). PubMed PMC
Uncapher, C. R., DeWitt, C. M. & Colonno, R. J. The major and minor group receptor families contain all but one human rhinovirus serotype. Virology180, 814–817 (1991). PubMed
Hofer, F. et al. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc. Natl Acad. Sci. USA91, 1839–1842 (1994). PubMed PMC
Greve, J. M. et al. The major human rhinovirus receptor is ICAM-1. Cell56, 839–847 (1989). PubMed
Nishimura, Y. et al. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat. Med15, 794–797 (2009). PubMed
Yamayoshi, S. et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat. Med15, 798–801 (2009). PubMed
Yamayoshi, S., Fujii, K. & Koike, S. Receptors for enterovirus 71. Emerg. Microbes Infect.3, e53 (2014). PubMed PMC
Morosky, S. et al. The neonatal Fc receptor is a pan-echovirus receptor. Proc. Natl Acad. Sci. USA116, 3758–3763 (2019). PubMed PMC
Vandesande, H. et al. Early Entry Events in Echovirus 30 Infection. J. Virol.94, e00592–20 (2020). PubMed PMC
Bayer, N. et al. Effect of bafilomycin A1 and nocodazole on endocytic transport in HeLa cells: implications for viral uncoating and infection. J. Virol.72, 9645–9655 (1998). PubMed PMC
Drose, S. & Altendorf, K. Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases. J. Exp. Biol.200, 1–8 (1997). PubMed
Garriga, D. et al. Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid. PLoS Pathog.8, e1002473 (2012). PubMed PMC
Ren, J. et al. Picornavirus uncoating intermediate captured in atomic detail. Nat. Commun.4, 1929 (2013). PubMed PMC
Buchta, D. et al. Enterovirus particles expel capsid pentamers to enable genome release. Nat. Commun.10, 1138 (2019). PubMed PMC
Wang, X. et al. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat. Struct. Mol. Biol.19, 424–429 (2012). PubMed PMC
Pickl-Herk, A. et al. Uncoating of common cold virus is preceded by RNA switching as determined by X-ray and cryo-EM analyses of the subviral A-particle. Proc. Natl Acad. Sci. USA110, 20063–20068 (2013). PubMed PMC
Shingler, K. L. et al. The enterovirus 71 A-particle forms a gateway to allow genome release: a cryoEM study of picornavirus uncoating. PLoS Pathog.9, e1003240 (2013). PubMed PMC
Hewat, E. A., Neumann, E. & Blaas, D. The concerted conformational changes during human rhinovirus 2 uncoating. Mol. Cell10, 317–326 (2002). PubMed
Hrebik, D. et al. ICAM-1 induced rearrangements of capsid and genome prime rhinovirus 14 for activation and uncoating. Proc. Natl Acad. Sci. USA118, e2024251118 (2021). PubMed PMC
Fuchs, R. & Blaas, D. Productive entry pathways of human rhinoviruses. Adv. Virol.2012, 826301 (2012). PubMed PMC
Brabec, M. et al. Opening of size-selective pores in endosomes during human rhinovirus serotype 2 in vivo uncoating monitored by single-organelle flow analysis. J. Virol.79, 1008–1016 (2005). PubMed PMC
Blacklow, S. C. Catching the common cold. Nat. Struct. Mol. Biol.11, 388–390 (2004). PubMed
Kumar, M. & Blaas, D. Human rhinovirus subviral a particle binds to lipid membranes over a twofold axis of icosahedral symmetry. J. Virol.87, 11309–11312 (2013). PubMed PMC
Davis, M. P. et al. Recombinant VP4 of human rhinovirus induces permeability in model membranes. J. Virol.82, 4169–4174 (2008). PubMed PMC
Bubeck, D. et al. The structure of the poliovirus 135S cell entry intermediate at 10-angstrom resolution reveals the location of an externalized polypeptide that binds to membranes. J. Virol.79, 7745–7755 (2005). PubMed PMC
Bubeck, D., Filman, D. J. & Hogle, J. M. Cryo-electron microscopy reconstruction of a poliovirus-receptor-membrane complex. Nat. Struct. Mol. Biol.12, 615–618 (2005). PubMed PMC
Strauss, M., Levy, H. C., Bostina, M., Filman, D. J. & Hogle, J. M. RNA transfer from poliovirus 135S particles across membranes is mediated by long umbilical connectors. J. Virol.87, 3903–3914 (2013). PubMed PMC
Panjwani, A. et al. Capsid protein VP4 of human rhinovirus induces membrane permeability by the formation of a size-selective multimeric pore. PLoS Pathog.10, e1004294 (2014). PubMed PMC
Lonberg-Holm, K., Gosser, L. B. & Shimshick, E. J. Interaction of liposomes with subviral particles of poliovirus type 2 and rhinovirus type 2. J. Virol.19, 746–749 (1976). PubMed PMC
Groppelli, E. et al. Picornavirus RNA is protected from cleavage by ribonuclease during virion uncoating and transfer across cellular and model membranes. PLoS Pathog.13, e1006197 (2017). PubMed PMC
Zauner, W., Blaas, D., Kuechler, E. & Wagner, E. Rhinovirus-mediated endosomal release of transfection complexes. J. Virol.69, 1085–1092 (1995). PubMed PMC
Vlasak, M., Goesler, I. & Blaas, D. Human rhinovirus type 89 variants use heparan sulfate proteoglycan for cell attachment. J. Virol.79, 5963–5970 (2005). PubMed PMC
Zhao, Z. & Michaely, P. The role of calcium in lipoprotein release by the low-density lipoprotein receptor. Biochemistry48, 7313–7324 (2009). PubMed PMC
Huang, S., Henry, L., Ho, Y. K., Pownall, H. J. & Rudenko, G. Mechanism of LDL binding and release probed by structure-based mutagenesis of the LDL receptor. J. Lipid Res51, 297–308 (2010). PubMed PMC
Beglova, N. & Blacklow, S. C. The LDL receptor: how acid pulls the trigger. Trends Biochem Sci.30, 309–317 (2005). PubMed
Arias-Moreno, X., Velazquez-Campoy, A., Rodriguez, J. C., Pocovi, M. & Sancho, J. Mechanism of low density lipoprotein (LDL) release in the endosome: implications of the stability and Ca2+ affinity of the fifth binding module of the LDL receptor. J. Biol. Chem.283, 22670–22679 (2008). PubMed
Konecsni, T. et al. Low pH-triggered beta-propeller switch of the low-density lipoprotein receptor assists rhinovirus infection. J. Virol.83, 10922–10930 (2009). PubMed PMC
Fricks, C. E. & Hogle, J. M. Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J. Virol.64, 1934–1945 (1990). PubMed PMC
Hendry, E. et al. The crystal structure of coxsackievirus A9: new insights into the uncoating mechanisms of enteroviruses. Structure7, 1527–1538 (1999). PubMed
Ilca, S. L. et al. Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes. Nat. Commun.6, 8843 (2015). PubMed PMC
Tuthill, T. J., Bubeck, D., Rowlands, D. J. & Hogle, J. M. Characterization of early steps in the poliovirus infection process: Receptor-decorated liposomes induce conversion of the virus to membrane-anchored entry-intermediate particles. J. Virol.80, 172–180 (2006). PubMed PMC
Tosteson, M. T. & Chow, M. Characterization of the ion channels formed by poliovirus in planar lipid membranes. J. Virol.71, 507–511 (1997). PubMed PMC
Brandenburg, B. et al. Imaging poliovirus entry in live cells. Plos Biol.5, e183 (2007). PubMed PMC
Danthi, P., Tosteson, M., Li, Q. H. & Chow, M. Genome delivery and ion channel properties are altered in VP4 mutants of poliovirus. J. Virol.77, 5266–5274 (2003). PubMed PMC
Bostina, M., Levy, H., Filman, D. J. & Hogle, J. M. Poliovirus RNA is released from the capsid near a twofold symmetry axis. J. Virol.85, 776–783 (2011). PubMed PMC
Mayor, S., Presley, J. F. & Maxfield, F. R. Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process. J. Cell Biol.121, 1257–1269 (1993). PubMed PMC
Naslavsky, N. & Caplan, S. The enigmatic endosome - sorting the ins and outs of endocytic trafficking. J. Cell Sci.131, jcs216499 (2018). PubMed PMC
Grant, B. D. & Donaldson, J. G. Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell Biol.10, 597–608 (2009). PubMed PMC
Williams, R. L. & Urbe, S. The emerging shape of the ESCRT machinery. Nat. Rev. Mol. Cell Biol.8, 355–368 (2007). PubMed
Seaman, M. N. The retromer complex - endosomal protein recycling and beyond. J. Cell Sci.125, 4693–4702 (2012). PubMed PMC
McNally, K. E. et al. Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat. Cell Biol.19, 1214–1225 (2017). PubMed PMC
Soulet, F., Yarar, D., Leonard, M. & Schmid, S. L. SNX9 regulates dynamin assembly and is required for efficient clathrin-mediated endocytosis. Mol. Biol. Cell16, 2058–2067 (2005). PubMed PMC
Taunton, J. et al. Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J. Cell Biol.148, 519–530 (2000). PubMed PMC
Merrifield, C. J., Qualmann, B., Kessels, M. M. & Almers, W. Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur. J. Cell Biol.83, 13–18 (2004). PubMed
Duleh, S. N. & Welch, M. D. WASH and the Arp2/3 complex regulate endosome shape and trafficking. Cytoskeleton (Hoboken)67, 193–206 (2010). PubMed PMC
Wandinger-Ness, A. & Zerial, M. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb. Perspect. Biol.6, a022616 (2014). PubMed PMC
Apodaca, G. Endocytic traffic in polarized epithelial cells: role of the actin and microtubule cytoskeleton. Traffic2, 149–159 (2001). PubMed
Schwerdt, C. E. & Fogh, J. The ratio of physical particles per infectious unit observed for poliomyelitis viruses. Virology4, 41–52 (1957). PubMed
Flint, S. J. Principles of virology : molecular biology, pathogenesis, and control of animal viruses. 2nd edn, (ASM Press, 2004).
Buttner, C. R., Spurny, R., Fuzik, T. & Plevka, P. Cryo-electron microscopy and image classification reveal the existence and structure of the coxsackievirus A6 virion. Commun. Biol.5, 898 (2022). PubMed PMC
Panjwani, A., Asfor, A. S. & Tuthill, T. J. The conserved N-terminus of human rhinovirus capsid protein VP4 contains membrane pore-forming activity and is a target for neutralizing antibodies. J. Gen. Virol.97, 3238–3242 (2016). PubMed PMC
Thelen, A. M. & Zoncu, R. Emerging Roles for the Lysosome in Lipid Metabolism. Trends Cell Biol.27, 833–850 (2017). PubMed PMC
Peterson, J. R. et al. Chemical inhibition of N-WASP by stabilization of a native autoinhibited conformation. Nat. Struct. Mol. Biol.11, 747–755 (2004). PubMed
Peterson, J. R., Lokey, R. S., Mitchison, T. J. & Kirschner, M. W. A chemical inhibitor of N-WASP reveals a new mechanism for targeting protein interactions. Proc. Natl Acad. Sci. USA98, 10624–10629 (2001). PubMed PMC
Guerriero, C. J. & Weisz, O. A. N-WASP inhibitor wiskostatin nonselectively perturbs membrane transport by decreasing cellular ATP levels. Am. J. Physiol. Cell Physiol.292, C1562–C1566 (2007). PubMed
Gupta, S. K., Haigh, B. J., Griffin, F. J. & Wheeler, T. T. The mammalian secreted RNases: mechanisms of action in host defence. Innate Immun.19, 86–97 (2013). PubMed
Lee, H. et al. The novel asymmetric entry intermediate of a picornavirus captured with nanodiscs. Sci. Adv.2, e1501929 (2016). PubMed PMC
Huotari, J. & Helenius, A. Endosome maturation. EMBO J.30, 3481–3500 (2011). PubMed PMC
Mounce, B. C. et al. Inhibition of Polyamine Biosynthesis Is a Broad-Spectrum Strategy against RNA Viruses. J. Virol.90, 9683–9692 (2016). PubMed PMC
Robinson, M. S., Watts, C. & Zerial, M. Membrane dynamics in endocytosis. Cell84, 13–21 (1996). PubMed
Salo, R. J. & Cliver, D. O. Effect of acid pH, salts, and temperature on the infectivity and physical integrity of enteroviruses. Arch. Virol.52, 269–282 (1976). PubMed
Fuzik, T., Moravcova, J., Kalynych, S. & Plevka, P. Structure of Human Enterovirus 70 and Its Inhibition by Capsid-Binding Compounds. J. Virol.96, e0060422 (2022). PubMed PMC
De Palma, A. M., Vliegen, I., De Clercq, E. & Neyts, J. Selective inhibitors of picornavirus replication. Med Res Rev.28, 823–884 (2008). PubMed
Plevka, P. et al. Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc. Natl Acad. Sci. USA110, 5463–5467 (2013). PubMed PMC
Martikainen, M. et al. Hydrophobic pocket targeting probes for enteroviruses. Nanoscale7, 17457–17467 (2015). PubMed
Lentz, K. N. et al. Structure of poliovirus type 2 Lansing complexed with antiviral agent SCH48973: comparison of the structural and biological properties of three poliovirus serotypes. Structure5, 961–978 (1997). PubMed
Gruenberger, M., Pevear, D., Diana, G. D., Kuechler, E. & Blaas, D. Stabilization of human rhinovirus serotype 2 against pH-induced conformational change by antiviral compounds. J. Gen. Virol.72, 431–433 (1991). PubMed
Zeichhardt, H., Otto, M. J., McKinlay, M. A., Willingmann, P. & Habermehl, K. O. Inhibition of poliovirus uncoating by disoxaril (WIN 51711). Virology160, 281–285 (1987). PubMed
Badger, J. et al. Structural analysis of a series of antiviral agents complexed with human rhinovirus 14. Proc. Natl Acad. Sci. USA85, 3304–3308 (1988). PubMed PMC
Pevear, D. C. et al. Conformational change in the floor of the human rhinovirus canyon blocks adsorption to HeLa cell receptors. J. Virol.63, 2002–2007 (1989). PubMed PMC
Grant, R. A. et al. Structures of poliovirus complexes with anti-viral drugs: implications for viral stability and drug design. Curr. Biol.4, 784–797 (1994). PubMed
Smith, T. J. et al. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science233, 1286–1293 (1986). PubMed
Fox, M. P., Otto, M. J. & McKinlay, M. A. Prevention of rhinovirus and poliovirus uncoating by WIN 51711, a new antiviral drug. Antimicrob. Agents Chemother.30, 110–116 (1986). PubMed PMC
Verdaguer, N., Blaas, D. & Fita, I. Structure of human rhinovirus serotype 2 (HRV2). J. Mol. Biol.300, 1179–1194 (2000). PubMed
Neubauer, C., Frasel, L., Kuechler, E. & Blaas, D. Mechanism of entry of human rhinovirus 2 into HeLa cells. Virology158, 255–258 (1987). PubMed
Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M. & Tashiro, Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J. Biol. Chem.266, 17707–17712 (1991). PubMed
Bayer, N., Prchla, E., Schwab, M., Blaas, D. & Fuchs, R. Human rhinovirus HRV14 uncoats from early endosomes in the presence of bafilomycin. FEBS Lett.463, 175–178 (1999). PubMed
McMinn, P. et al. Phylogenetic analysis of enterovirus 71 strains isolated during linked epidemics in Malaysia, Singapore, and Western Australia. J. Virol.75, 7732–7738 (2001). PubMed PMC
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods25, 402–408 (2001). PubMed
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol.152, 36–51 (2005). PubMed
Hagen, W. J. H., Wan, W. & Briggs, J. A. G. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol.197, 191–198 (2017). PubMed PMC
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods14, 331–332 (2017). PubMed PMC
Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol.116, 71–76 (1996). PubMed
Bepler, T., Kelley, K., Noble, A. J. & Berger, B. Topaz-Denoise: general deep denoising models for cryoEM and cryoET. Nat. Commun.11, 5208 (2020). PubMed PMC
Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci.27, 14–25 (2018). PubMed PMC
Zhang, C., Lai, C. L. & Pettitt, B. M. Accelerating the weighted histogram analysis method by direct inversion in the iterative subspace. Mol. Simul.42, 1079–1089 (2016). PubMed PMC
Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol.193, 1–12 (2016). PubMed PMC
Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol.2, 218 (2019). PubMed PMC
Scheres, S. H. A Bayesian view on cryo-EM structure determination. J. Mol. Biol.415, 406–418 (2012). PubMed PMC
Scheres, S. H., Nunez-Ramirez, R., Sorzano, C. O., Carazo, J. M. & Marabini, R. Image processing for electron microscopy single-particle analysis using XMIPP. Nat. Protoc.3, 977–990 (2008). PubMed PMC
Kleywegt, G. J. & Jones, T. A. xdlMAPMAN and xdlDATAMAN - programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets. Acta Crystallogr D. Biol. Crystallogr52, 826–828 (1996). PubMed
Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol.157, 38–46 (2007). PubMed
Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput Chem.25, 1605–1612 (2004). PubMed
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D. Biol. Crystallogr66, 213–221 (2010). PubMed PMC
Zhang, X. et al. Structures and stabilization of kinetoplastid-specific split rRNAs revealed by comparing leishmanial and human ribosomes. Nat. Commun.7, 13223 (2016). PubMed PMC
Foster, H. E., Ventura Santos, C. & Carter, A. P. A cryo-ET survey of microtubules and intracellular compartments in mammalian axons. J. Cell Biol.221, e202103154 (2022). PubMed PMC
Himes, B. A. & Zhang, P. emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nat. Methods15, 955–961 (2018). PubMed PMC