• This record comes from PubMed

RAD51 recruitment but not replication fork stability associates with PARP inhibitor response in ovarian cancer patient-derived xenograft models

. 2024 Dec ; 6 (4) : zcae044. [epub] 20241128

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article

Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) are currently used to treat BRCA1/2 mutant cancers. Although PARPi sensitivity has been attributed to homologous recombination (HR) defects, other roles of HR factors have also been linked to response to PARPi, including replication fork protection. In this study, we investigated PARPi sensitivity in ovarian cancer patient-derived xenograft (PDX) models in relation to HR proficiency and replication fork protection. Analysis of BRCA1/2 status showed that in our cohort of 31 ovarian cancer PDX models 22.6% harbored a BRCA1/2 alteration (7/31), and 48.3% (15/31) were genomically unstable as measured by copy number alteration analysis. In vivo, PARPi olaparib response was measured in 15 selected PDX models. Functional assessment of HR using ex vivo irradiation-induced RAD51 foci formation identified all olaparib-sensitive PDX models, including four models without BRCA1/2 alterations. In contrast, replication fork protection or replication speed in ex vivo tumor tissue did not correlate with olaparib response. Targeted panel sequencing in olaparib-sensitive models lacking BRCA1/2 alterations revealed a MUS81 variant as a possible mechanism underlying PARPi sensitivity. Combined, we show that ex vivo RAD51 analysis effectively predicts in vivo olaparib response and revealed a subset of PARPi-sensitive, HR-deficient ovarian cancer PDX models, lacking a BRCA1/2 alteration.

See more in PubMed

Reid  B.M., Permuth  J.B., Sellers  T.A.  Epidemiology of ovarian cancer: a review. Cancer Biol. Med.  2017; 14:9–32. PubMed PMC

Cancer Genome Atlas Research Network Bell  D., Berchuck  A., Birrer  M., Chien  J., Cramer  D.W., Dao  F., Dhir  R., Disaia  P., Gabra  H.  et al. .  Integrated genomic analyses of ovarian carcinoma. Nature. 2011; 474:609–615. PubMed PMC

Antoniou  A., Pharoah  P.D.P., Narod  S., Risch  H.A., Eyfjord  J.E., Hopper  J.L., Loman  N., Olsson  H., Johannsson  O., Borg  Å.  et al. .  Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am. J. Hum. Genet.  2003; 72:1117–1130. PubMed PMC

Kuchenbaecker  K.B., Hopper  J.L., Barnes  D.R., Phillips  K.A., Mooij  T.M., Roos-Blom  M.J., Jervis  S., Van Leeuwen  F.E., Milne  R.L., Andrieu  N.  et al. .  Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. J. Am. Med. Assoc.  2017; 317:2402–2416. PubMed

Moynahan  M.E., Jasin  M.  Mitotic homologous recombination maintains genomic stability. Nat. Rev. Mol. Cell Biol.  2010; 11:196–207. PubMed PMC

Schlacher  K., Wu  H., Jasin  M.  A distinct replication fork protection pathway connects fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell. 2012; 22:106–116. PubMed PMC

Schlacher  K., Christ  N., Siaud  N., Egashira  A., Wu  H., Jasin  M.  Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell. 2011; 145:529–542. PubMed PMC

Cong  K., Peng  M., Kousholt  A.N., Lee  W.T.C., Lee  S., Nayak  S., Krais  J., VanderVere-Carozza  P.S., Pawelczak  K.S., Calvo  J.  et al. .  Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol. Cell. 2021; 81:3128–3144. PubMed PMC

Kang  Z., Fu  P., Alcivar  A.L., Fu  H., Redon  C., Foo  T.K., Zuo  Y., Ye  C., Baxley  R., Madireddy  A.  et al. .  BRCA2 associates with MCM10 to suppress PRIMPOL-mediated repriming and single-stranded gap formation after DNA damage. Nat. Commun.  2021; 12:5966. PubMed PMC

Taglialatela  A., Leuzzi  G., Sannino  V., Cuella-Martin  R., Huang  J.-W., Wu-Baer  F., Baer  R., Costanzo  V., Ciccia  A.  REV1-Polζ maintains the viability of homologous recombination-deficient cancer cells through mutagenic repair of PRIMPOL-dependent ssDNA gaps. Mol. Cell. 2021; 81:4008–4025. PubMed PMC

Bryant  H.E., Schultz  N., Thomas  H.D., Parker  K.M., Flower  D., Lopez  E., Kyle  S., Meuth  M., Curtin  N.J., Helleday  T.  Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005; 434:913–917. PubMed

Farmer  H., McCabe  H., Lord  C.J., Tutt  A.H.J., Johnson  D.A., Richardson  T.B., Santarosa  M., Dillon  K.J., Hickson  I., Knights  C.  et al. .  Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005; 434:917–921. PubMed

Robson  M., Im  S.A., Senkus  E., Xu  B., Domchek  S.M., Masuda  N., Delaloge  S., Li  W., Tung  N., Armstrong  A.  et al. .  Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med.  2017; 377:523–533. PubMed

Helleday  T.  The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol. Oncol.  2011; 5:387–393. PubMed PMC

Murai  J., Huang  S.N.Y.N., Das  B.B., Renaud  A., Zhang  Y., Doroshow  J.H., Ji  J., Takeda  S., Pommier  Y.  Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res.  2012; 72:5588–5599. PubMed PMC

Ray Chaudhuri  A., Callen  E., Ding  X., Gogola  E., Duarte  A.A., Lee  J.-E., Wong  N., Lafarga  V., Calvo  J.A., Panzarino  N.J.  et al. .  Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature. 2016; 535:382–387. PubMed PMC

Pommier  Y., O’Connor  M.J., de Bono  J.  Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci. Transl. Med.  2016; 8:362ps17. PubMed

Maya-Mendoza  A., Moudry  P., Merchut-Maya  J.M., Lee  M., Strauss  R., Bartek  J.  High speed of fork progression induces DNA replication stress and genomic instability. Nature. 2018; 559:279–284. PubMed

Cong  K., Peng  M., Kousholt  A.N., Lee  W.T.C., Lee  S., Nayak  S., Krais  J., VanderVere-Carozza  P.S., Pawelczak  K.S., Calvo  J.  et al. .  Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol. Cell. 2021; 81:3227. PubMed

Panzarino  N.J., Krais  J.J., Cong  K., Peng  M., Mosqueda  M., Nayak  S.U., Bond  S.M., Calvo  J.A., Doshi  M.B., Bere  M.  et al. .  Replication gaps underlie BRCA deficiency and therapy response. Cancer Res.  2021; 81:1388–1397. PubMed PMC

Petropoulos  M., Karamichali  A., Rossetti  G.G., Freudenmann  A., Iacovino  L.G., Dionellis  V.S., Sotiriou  S.K., Halazonetis  T.D.  Transcription-replication conflicts underlie sensitivity to PARP inhibitors. Nature. 2024; 628:433–441. PubMed PMC

Pettitt  S.J., Frankum  J.R., Punta  M., Lise  S., Alexander  J., Chen  Y., Yap  T.A., Haider  S., Tutt  A.N.J., Lord  C.J.  Clinical BRCA1/2 reversion analysis identifies hotspot mutations and predicted neoantigens associated with therapy resistance. Cancer Discov.  2020; 10:1475–1488. PubMed PMC

Bouwman  P., Aly  A., Escandell  J.M., Pieterse  M., Bartkova  J., Van Der Gulden  H., Hiddingh  S., Thanasoula  M., Kulkarni  A., Yang  Q.  et al. .  53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat. Struct. Mol. Biol.  2010; 17:688–695. PubMed PMC

Bunting  S.F., Callén  E., Wong  N., Chen  H.T., Polato  F., Gunn  A., Bothmer  A., Feldhahn  N., Fernandez-Capetillo  O., Cao  L.  et al. .  53BP1 inhibits homologous recombination in brca1-deficient cells by blocking resection of DNA breaks. Cell. 2010; 141:243–254. PubMed PMC

Xu  G., Ross Chapman  J., Brandsma  I., Yuan  J., Mistrik  M., Bouwman  P., Bartkova  J., Gogola  E., Warmerdam  D., Barazas  M.  et al. .  REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature. 2015; 521:541–544. PubMed PMC

Dev  H., Chiang  T.W.W., Lescale  C., de Krijger  I., Martin  A.G., Pilger  D., Coates  J., Sczaniecka-Clift  M., Wei  W., Ostermaier  M.  et al. .  Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nat. Cell Biol.  2018; 20:954–965. PubMed PMC

Noordermeer  S.M., Adam  S., Setiaputra  D., Barazas  M., Pettitt  S.J., Ling  A.K., Olivieri  M., Álvarez-Quilón  A., Moatti  N., Zimmermann  M.  et al. .  The shieldin complex mediates 53BP1-dependent DNA repair. Nature. 2018; 560:117–121. PubMed PMC

Barazas  M., Annunziato  S., Pettitt  S.J., de Krijger  I., Ghezraoui  H., Roobol  S.J., Lutz  C., Frankum  J., Song  F.F., Brough  R.  et al. .  The CST complex mediates end protection at double-strand breaks and promotes PARP inhibitor sensitivity in BRCA1-deficient cells. Cell Rep.  2018; 23:2107–2118. PubMed PMC

Lim  P.X., Zaman  M., Feng  W., Jasin  M.  BRCA2 promotes genomic integrity and therapy resistance primarily through its role in homology-directed repair. Mol. Cell. 2024; 84:447–462.e10. PubMed PMC

Talens  F., Jalving  M., Gietema  J.A., Van Vugt  M.A.  Therapeutic targeting and patient selection for cancers with homologous recombination defects. Exp. Opin. Drug Discov.  2017; 12:565–581. PubMed

Telli  M.L., Timms  K.M., Reid  J., Hennessy  B., Mills  G.B., Jensen  K.C., Szallasi  Z., Barry  W.T., Winer  E.P., Tung  N.M.  et al. .  Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin. Cancer Res.  2016; 22:3764–3773. PubMed PMC

Tutt  A., Tovey  H., Cheang  M.C.U., Kernaghan  S., Kilburn  L., Gazinska  P., Owen  J., Abraham  J., Barrett  S., Barrett-Lee  P.  et al. .  Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat. Med.  2018; 24:628–637. PubMed PMC

Mirza  M.R., Monk  B.J., Herrstedt  J., Oza  A.M., Mahner  S., Redondo  A., Fabbro  M., Ledermann  J.A., Lorusso  D., Vergote  I.  et al. .  Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N. Engl. J. Med.  2016; 375:2154–2164. PubMed

Davies  H., Glodzik  D., Morganella  S., Yates  L.R., Staaf  J., Zou  X., Ramakrishna  M., Martin  S., Boyault  S., Sieuwerts  A.M.  et al. .  HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med.  2017; 23:517–525. PubMed PMC

Angus  L., Smid  M., Wilting  S.M., van Riet  J., Van Hoeck  A., Nguyen  L., Nik-Zainal  S., Steenbruggen  T.G., Tjan-Heijnen  V.C.G., Labots  M.  et al. .  The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies. Nat. Genet.  2019; 51:1450–1458. PubMed PMC

Zhao  E.Y., Shen  Y., Pleasance  E., Kasaian  K., Leelakumari  S., Jones  M., Bose  P., Ch’ng  C., Reisle  C., Eirew  P.  et al. .  Homologous recombination deficiency and platinum-based therapy outcomes in advanced breast cancer. Clin. Cancer Res.  2017; 23:7521–7530. PubMed

Konstantinopoulos  P.A., Ceccaldi  R., Shapiro  G.I., D’Andrea  A.D  Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov.  2015; 5:1137–1154. PubMed PMC

Takaya  H., Nakai  H., Takamatsu  S., Mandai  M., Matsumura  N.  Homologous recombination deficiency status-based classification of high-grade serous ovarian carcinoma. Sci. Rep.  2020; 10:2757. PubMed PMC

Pennington  K.P., Walsh  T., Harrell  M.I., Lee  M.K., Pennil  C.C., Rendi  M.H., Thornton  A., Norquist  B.M., Casadei  S., Nord  A.S.  et al. .  Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin. Cancer Res.  2014; 20:764–775. PubMed PMC

Lhotova  K., Stolarova  L., Zemankova  P., Vocka  M., Janatova  M., Borecka  M., Cerna  M., Jelinkova  S., Kral  J., Volkova  Z.  et al. .  Multigene panel germline testing of 1333 Czech patients with ovarian cancer. Cancers (Basel). 2020; 12:956. PubMed PMC

Coleman  R.L., Oza  A.M., Lorusso  D., Aghajanian  C., Oaknin  A., Dean  A., Colombo  N., Weberpals  J.I., Clamp  A., Scambia  G.  et al. .  Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet (London, England). 2017; 390:1949–1961. PubMed PMC

Naipal  K.A.T., Verkaik  N.S., Ameziane  N., Van Deurzen  C.H.M., Brugge  P.T., Meijers  M., Sieuwerts  A.M., Martens  J.W., O’Connor  M.J., Vrieling  H.  et al. .  Functional ex vivo assay to select homologous recombination-deficient breast tumors for PARP inhibitor treatment. Clin. Cancer Res.  2014; 20:4816–4826. PubMed

Haaf  T., Golub  E.I., Reddy  G., Radding  C.M., Ward  D.C.  Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. Proc. Natl Acad. Sci. U.S.A. 1995; 92:2298–2302. PubMed PMC

Meijer  T.G., Verkaik  N.S., Sieuwerts  A.M., Van Riet  J., Naipal  K.A.T., Van Deurzen  C.H.M., Den Bakker  M.A., Sleddens  H.F.B.M., Dubbink  H.J., Dorine den Toom  T.  et al. .  Functional ex vivo assay reveals homologous recombination deficiency in breast cancer beyond BRCA gene defects. Clin. Cancer Res.  2018; 24:6277–6287. PubMed

Castroviejo-Bermejo  M., Cruz  C., Llop-Guevara  A., Gutiérrez-Enríquez  S., Ducy  M., Ibrahim  Y.H., Gris-Oliver  A., Pellegrino  B., Bruna  A., Guzmán  M.  et al. .  A RAD51 assay feasible in routine tumor samples calls PARP inhibitor response beyond BRCA mutation. EMBO Mol. Med.  2018; 10:e9172. PubMed PMC

Cruz  C., Castroviejo-Bermejo  M., Gutiérrez-Enríquez  S., Llop-Guevara  A., Ibrahim  Y.H., Gris-Oliver  A., Bonache  S., Morancho  B., Bruna  A., Rueda  O.M.  et al. .  RAD51 foci as a functional biomarker of homologous recombination repair and PARP inhibitor resistance in germline BRCA-mutated breast cancer. Ann. Oncol.  2018; 29:1203–1210. PubMed PMC

Meijer  T.G., Verkaik  N.S., van Deurzen  C.H.M., Dubbink  H.-J., den Toom  T.D., Sleddens  H.F.B.M., De Hoop  E.O., Dinjens  W.N.M., Kanaar  R., van Gent  D.C.  et al. .  Direct ex vivo observation of homologous recombination defect reversal after DNA-damaging chemotherapy in patients with metastatic breast cancer. JCO Precis. Oncol.  2019; 3:1–12. PubMed

Tumiati  M., Hietanen  S., Hynninen  J., Pietila  E., Farkkil  A., Kaipio  K., Roering  P., Huhtinen  K., Alkodsi  A., Li  Y.  et al. .  A functional homologous recombination assay predicts primary chemotherapy response and long-term survival in ovarian cancer patients. Clin. Cancer Res.  2018; 24:4482–4493. PubMed

Mukhopadhyay  A., Elattar  A., Cerbinskaite  A., Wilkinson  S.J., Drew  Y., Kyle  S., Los  G., Hostomsky  Z., Edmondson  R.J., Curtin  N.J.  Development of a functional assay for homologous recombination status in primary cultures of epithelial ovarian tumor and correlation with sensitivity to poly(ADP-ribose) polymerase inhibitors. Clin. Cancer Res.  2010; 16:2344–2351. PubMed

Alkema  N.G., Tomar  T., Duiker  E.W., Jan Meersma  G., Klip  H., van der Zee  A.G.J., Wisman  G.B.A., de Jong  S.  Biobanking of patient and patient-derived xenograft ovarian tumour tissue: efficient preservation with low and high fetal calf serum based methods. Sci. Rep.  2015; 5:14495. PubMed PMC

Fokkema  I.F.A.C., Kroon  M., López Hernández  J.A., Asscheman  D., Lugtenburg  I., Hoogenboom  J., den Dunnen  J.T.  The LOVD3 platform: efficient genome-wide sharing of genetic variants. Eur. J. Hum. Genet.  2021; 29:1796–1803. PubMed PMC

Schouten  P.C., Richters  L., Vis  D.J., Kommoss  S., Dijk  E.V., Ernst  C., Kluin  R.J.C., Marm  F.M., Lips  E.H., Schmidt  S.  et al. .  Ovarian cancer-specific BRCA-like copy-number aberration classifiers detect mutations associated with homologous recombination deficiency in the AGO-TR1 trial. Clin. Cancer Res.  2021; 27:6559–6569. PubMed PMC

Ter Brugge  P., Kristel  P., van der Burg  E., Boon  U., de Maaker  M., Lips  E., Mulder  L., de Ruiter  J., Moutinho  C., Gevensleben  H.  et al. .  Mechanisms of therapy resistance in patient-derived xenograft models of BRCA1-deficient breast cancer. J. Natl. Cancer Inst.  2016; 108:1075. PubMed

Eisenhauer  E.A., Therasse  P., Bogaerts  J., Schwartz  L.H., Sargent  D., Ford  R., Dancey  J., Arbuck  S., Gwyther  S., Mooney  M.  et al. .  New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer. 2008; 45:228–247. PubMed

van Wijk  L.M., Vermeulen  S., Meijers  M., van Diest  M.F., Ter Haar  N.T., de Jonge  M.M., Solleveld-Westerink  N., van Wezel  T., van Gent  D.C., Kroep  J.R.  et al. .  The RECAP test rapidly and reliably identifies homologous recombination-deficient ovarian carcinomas. Cancers (Basel).  2020; 12:2805. PubMed PMC

Fu  H., Aladjem  M.I.  DNA replication profiling by molecular combing on single DNA fibers. STAR Protoc.  2022; 3:101290. PubMed PMC

Soukupova  J., Zemankova  P., Lhotova  K., Janatova  M., Borecka  M., Stolarova  L., Lhota  F., Foretova  L., Machackova  E., Stranecky  V.  et al. .  Validation of CZECANCA (CZEch CAncer paNel for Clinical Application) for targeted NGS-based analysis of hereditary cancer syndromes. PLoS One. 2018; 13:e0195761. PubMed PMC

Fugger  K., Bajrami  I., Silva Dos Santos  M., Young  S.J., Kunzelmann  S., Kelly  G., Hewitt  G., Patel  H., Goldstone  R., Carell  T.  et al. .  Targeting the nucleotide salvage factor DNPH1 sensitizes BRCA-deficient cells to PARP inhibitors. Science. 2021; 372:156–165. PubMed PMC

Kaufman  B., Shapira-Frommer  R., Schmutzler  R.K., Audeh  M.W., Friedlander  M., Balmaña  J., Mitchell  G., Fried  G., Stemmer  S.M., Hubert  A.  et al. .  Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol.  2015; 33:244–250. PubMed PMC

Vollebergh  M.A., Lips  E.H., Nederlof  P.M., Wessels  L.F.A., Wesseling  J., Vd Vijver  M.J., de Vries  E.G.E., van Tinteren  H., Jonkers  J., Hauptmann  M.  et al. .  Genomic patterns resembling BRCA1- and BRCA2-mutated breast cancers predict benefit of intensified carboplatin-based chemotherapy. Breast Cancer Res.  2014; 16:R47. PubMed PMC

Compadre  A.J., van Biljon  L.N., Valentine  M.C., Llop-Guevara  A., Graham  E., Fashemi  B., Herencia-Ropero  A., Kotnik  E.N., Cooper  I., Harrington  S.P.  et al. .  RAD51 Foci as a biomarker predictive of platinum chemotherapy response in ovarian cancer. Clin. Cancer Res.  2023; 29:2466–2479. PubMed PMC

Torres-Esquius  S., Llop-Guevara  A., Gutiérrez-Enríquez  S., Romey  M., Teulé  À., Llort  G., Herrero  A., Sánchez-Henarejos  P., Vallmajó  A., González-Santiago  S.  et al. .  Prevalence of homologous recombination deficiency among patients with germline RAD51C/D breast or ovarian cancer. JAMA Netw. Open. 2024; 7:e247811. PubMed PMC

Ström  C.E., Johansson  F., Uhlén  M., Szigyarto  C.A.-K., Erixon  K., Helleday  T.  Poly (ADP-ribose) polymerase (PARP) is not involved in base excision repair but PARP inhibition traps a single-strand intermediate. Nucleic Acids Res.  2011; 39:3166–3175. PubMed PMC

Zhong  A., Zhang  H., Xie  S., Deng  M., Zheng  H., Wang  Y., Chen  M., Lu  R., Guo  L.  Inhibition of MUS81 improves the chemical sensitivity of olaparib by regulating MCM2 in epithelial ovarian cancer. Oncol. Rep.  2018; 39:1747–1756. PubMed

Zimmermann  M., Murina  O., Reijns  M.A.M., Agathanggelou  A., Challis  R., Tarnauskaite  Ž., Muir  M., Fluteau  A., Aregger  M., McEwan  A.  et al. .  CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature. 2018; 559:285–289. PubMed PMC

Mateo  J., Carreira  S., Sandhu  S., Miranda  S., Mossop  H., Perez-Lopez  R., Nava Rodrigues  D., Robinson  D., Omlin  A., Tunariu  N.  et al. .  DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med.  2015; 373:1697–1708. PubMed PMC

Lheureux  S., Bruce  J.P., Burnier  J.V., Karakasis  K., Shaw  P.A., Clarke  B.A., Yang  S.Y.C., Quevedo  R., Li  T., Dowar  M.  et al. .  Somatic BRCA1/2 recovery as a resistance mechanism after exceptional response to poly (ADP-ribose) polymerase inhibition. J. Clin. Oncol.  2017; 35:1240–1249. PubMed

Feng  W., Jasin  M.  BRCA2 suppresses replication stress-induced mitotic and G1 abnormalities through homologous recombination. Nat. Commun.  2017; 8:525. PubMed PMC

Chen  M., van den Tempel  N., Bhattacharya  A., Yu  S., Rutgers  B., Fehrmann  R.S.N., de Haas  S., van der Vegt  B., van Vugt  M.A.  Functional ex vivo DNA fibre assay to measure replication dynamics in breast cancer tissue. J. Pathol.  2024; 264:90–100. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...