Are ENT1/ENT1, NOTCH3, and miR-21 Reliable Prognostic Biomarkers in Patients with Resected Pancreatic Adenocarcinoma Treated with Adjuvant Gemcitabine Monotherapy?

. 2019 Oct 23 ; 11 (11) : . [epub] 20191023

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31652721

Grantová podpora
EFSA-CDN (No. CZ.02.1.01/0.0/0.0/16_019/0000841) co-funded by ERDF European Regional Development Fund
BBMRICZ EF16 013/0001674 European Regional Development Fund
812216/C/2016 Grantová Agentura, Univerzita Karlova
SVV 2017/260-414 Univerzita Karlova v Praze
PROGRES Q40/11 Univerzita Karlova v Praze
BBMRI-CZ LM2015089 Ministerstvo Školství, Mládeže a Tělovýchovy

Evidence on equilibrative nucleoside transporter 1 (ENT1) and microRNA-21 (miR‑21) is not yet sufficiently convincing to consider them as prognostic biomarkers for patients with pancreatic ductal adenocarcinoma (PDAC). Here, we investigated the prognostic value of ENT1/ENT1, miR-21, and neurogenic locus homolog protein 3 gene (NOTCH3) in a well-defined cohort of resected patients treated with adjuvant gemcitabine chemotherapy (n = 69). Using a combination of gene expression quantification in microdissected tissue, immunohistochemistry, and univariate/multivariate statistical analyses we did not confirm association of ENT1/ENT1 and NOTCH3 with improved disease-specific survival (DSS). Low miR-21 was associated with longer DSS in patients with negative regional lymph nodes or primary tumor at stage 1 and 2. In addition, downregulation of ENT1 was observed in PDAC of patients with high ENT1 expression in normal pancreas, whereas NOTCH3 was upregulated in PDAC of patients with low NOTCH3 levels in normal pancreas. Tumor miR‑21 was upregulated irrespective of its expression in normal pancreas. Our data confirmed that patient stratification based on expression of ENT1/ENT1 or miR‑21 is not ready to be implemented into clinical decision-making processes. We also conclude that occurrence of ENT1 and NOTCH3 deregulation in PDAC is dependent on their expression in normal pancreas.

Zobrazit více v PubMed

Garrido-Laguna I., Hidalgo M. Pancreatic cancer: From state-of-the-art treatments to promising novel therapies. Nat. Rev. Clin. Oncol. 2015;12:319–334. doi: 10.1038/nrclinonc.2015.53. PubMed DOI

Kleeff J., Korc M., Apte M., la Vecchia C., Johnson C.D., Biankin A.V., Neale R.E., Tempero M., Tuveson D.A., Hruban R.H., et al. Pancreatic cancer. Nat. Rev. Dis. Primers. 2016;2:16022. doi: 10.1038/nrdp.2016.22. PubMed DOI

Rahib L., Smith B.D., Aizenberg R., Rosenzweig A.B., Fleshman J.M., Matrisian L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–2921. doi: 10.1158/0008-5472.CAN-14-0155. PubMed DOI

Kommalapati A., Tella S.H., Goyal G., Ma W.W., Mahipal A. Contemporary management of localized resectable pancreatic cancer. Cancers. 2018;10:24. doi: 10.3390/cancers10010024. PubMed DOI PMC

Neoptolemos J.P., Dunn J.A., Stocken D.D., Almond J., Link K., Beger H., Bassi C., Falconi M., Pederzoli P., Dervenis C., et al. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: A randomised controlled trial. Lancet. 2001;358:1576–1585. doi: 10.1016/S0140-6736(01)06651-X. PubMed DOI

Neoptolemos J.P., Stocken D.D., Friess H., Bassi C., Dunn J.A., Hickey H., Beger H., Fernandez-Cruz L., Dervenis C., Lacaine F., et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N. Engl. J. Med. 2004;350:1200–1210. doi: 10.1056/NEJMoa032295. PubMed DOI

Oettle H., Neuhaus P., Hochhaus A., Hartmann J.T., Gellert K., Ridwelski K., Niedergethmann M., Zulke C., Fahlke J., Arning M.B., et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: The CONKO-001 randomized trial. JAMA. 2013;310:1473–1481. doi: 10.1001/jama.2013.279201. PubMed DOI

Neoptolemos J.P., Stocken D.D., Smith C.T., Bassi C., Ghaneh P., Owen E., Moore M., Padbury R., Doi R., Smith D., et al. Adjuvant 5-fluorouracil and folinic acid vs observation for pancreatic cancer: Composite data from the ESPAC-1 and-3(v1) trials. Br. J. Cancer. 2009;100:246–250. doi: 10.1038/sj.bjc.6604838. PubMed DOI PMC

Neoptolemos J.P., Palmer D.H., Ghaneh P., Psarelli E.E., Valle J.W., Halloran C.M., Faluyi O., O’Reilly D.A., Cunningham D., Wadsley J., et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): A multicentre, open-label, randomised, phase 3 trial. Lancet. 2017;389:1011–1024. doi: 10.1016/S0140-6736(16)32409-6. PubMed DOI

Conroy T., Hammel P., Hebbar M., Abdelghani M.B., Wei A.C., Raoul J.L., Chone L., Francois E., Artru P., Biagi J.J., et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N. Engl. J. Med. 2018;379:2395–2406. doi: 10.1056/NEJMoa1809775. PubMed DOI

Huang J., Liao W., Zhou J., Zhang P., Wen F., Wang X., Zhang M., Zhou K., Wu Q., Li Q. Cost-effectiveness analysis of adjuvant treatment for resected pancreatic cancer in China based on the ESPAC-4 trial. Cancer Manag. Res. 2018;10:4065–4072. doi: 10.2147/CMAR.S172704. PubMed DOI PMC

Fujita H., Ohuchida K., Mizumoto K., Itaba S., Ito T., Nakata K., Yu J., Kayashima T., Souzaki R., Tajiri T., et al. Gene expression levels as predictive markers of outcome in pancreatic cancer after gemcitabine-based adjuvant chemotherapy. Neoplasia. 2010;12:807–817. doi: 10.1593/neo.10458. PubMed DOI PMC

Greenhalf W., Ghaneh P., Neoptolemos J.P., Palmer D.H., Cox T.F., Lamb R.F., Garner E., Campbell F., Mackey J.R., Costello E., et al. Pancreatic cancer hENT1 expression and survival from gemcitabine in patients from the ESPAC-3 trial. J. Natl. Cancer Inst. 2014;106:djt347. doi: 10.1093/jnci/djt347. PubMed DOI

Marechal R., Bachet J.B., Mackey J.R., Dalban C., Demetter P., Graham K., Couvelard A., Svrcek M., Bardier-Dupas A., Hammel P., et al. Levels of gemcitabine transport and metabolism proteins predict survival times of patients treated with gemcitabine for pancreatic adenocarcinoma. Gastroenterology. 2012;143:664–674. doi: 10.1053/j.gastro.2012.06.006. PubMed DOI

Morinaga S., Nakamura Y., Watanabe T., Mikayama H., Tamagawa H., Yamamoto N., Shiozawa M., Akaike M., Ohkawa S., Kameda Y., et al. Immunohistochemical analysis of human equilibrative nucleoside transporter-1 (hENT1) predicts survival in resected pancreatic cancer patients treated with adjuvant gemcitabine monotherapy. Ann. Surg. Oncol. 2012;19(Suppl. 3):S558–S564. doi: 10.1245/s10434-011-2054-z. PubMed DOI

Andersson R., Aho U., Nilsson B.I., Peters G.J., Pastor-Anglada M., Rasch W., Sandvold M.L. Gemcitabine chemoresistance in pancreatic cancer: Molecular mechanisms and potential solutions. Scand. J. Gastroenterol. 2009;44:782–786. doi: 10.1080/00365520902745039. PubMed DOI

Garcia-Manteiga J., Molina-Arcas M., Casado F.J., Mazo A., Pastor-Anglada M. Nucleoside transporter profiles in human pancreatic cancer cells: Role of hCNT1 in 2′,2′-difluorodeoxycytidine-induced cytotoxicity. Clin. Cancer Res. 2003;9:5000–5008. PubMed

Farrell J.J., Elsaleh H., Garcia M., Lai R., Ammar A., Regine W.F., Abrams R., Benson A.B., Macdonald J., Cass C.E., et al. Human equilibrative nucleoside transporter 1 levels predict response to gemcitabine in patients with pancreatic cancer. Gastroenterology. 2009;136:187–195. doi: 10.1053/j.gastro.2008.09.067. PubMed DOI

Giovannetti E., del Tacca M., Mey V., Funel N., Nannizzi S., Ricci S., Orlandini C., Boggi U., Campani D., del Chiaro M., et al. Transcription analysis of human equilibrative nucleoside transporter-1 predicts survival in pancreas cancer patients treated with gemcitabine. Cancer Res. 2006;66:3928–3935. doi: 10.1158/0008-5472.CAN-05-4203. PubMed DOI

Svrcek M., Cros J., Marechal R., Bachet J.B., Flejou J.F., Demetter P. Human equilibrative nucleoside transporter 1 testing in pancreatic ductal adenocarcinoma: A comparison between murine and rabbit antibodies. Histopathology. 2015;66:457–462. doi: 10.1111/his.12577. PubMed DOI

Sinn M., Riess H., Sinn B.V., Stieler J.M., Pelzer U., Striefler J.K., Oettle H., Bahra M., Denkert C., Blaker H., et al. Human equilibrative nucleoside transporter 1 expression analysed by the clone SP 120 rabbit antibody is not predictive in patients with pancreatic cancer treated with adjuvant gemcitabine—Results from the CONKO-001 trial. Eur. J. Cancer. 2015;51:1546–1554. doi: 10.1016/j.ejca.2015.05.005. PubMed DOI

Brunetti O., Russo A., Scarpa A., Santini D., Reni M., Bittoni A., Azzariti A., Aprile G., Delcuratolo S., Signorile M., et al. MicroRNA in pancreatic adenocarcinoma: Predictive/prognostic biomarkers or therapeutic targets? Oncotarget. 2015;6:23323–23341. doi: 10.18632/oncotarget.4492. PubMed DOI PMC

Chan J.A., Krichevsky A.M., Kosik K.S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:6029–6033. doi: 10.1158/0008-5472.CAN-05-0137. PubMed DOI

Dhayat S.A., Abdeen B., Kohler G., Senninger N., Haier J., Mardin W.A. MicroRNA-100 and microRNA-21 as markers of survival and chemotherapy response in pancreatic ductal adenocarcinoma UICC stage II. Clin. Epigenet. 2015;7:132. doi: 10.1186/s13148-015-0166-1. PubMed DOI PMC

Giovannetti E., Funel N., Peters G.J., del Chiaro M., Erozenci L.A., Vasile E., Leon L.G., Pollina L.E., Groen A., Falcone A., et al. MicroRNA-21 in pancreatic cancer: Correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. 2010;70:4528–4538. doi: 10.1158/0008-5472.CAN-09-4467. PubMed DOI

Kim R., Tan A., Lai K.K., Jiang J., Wang Y., Rybicki L.A., Liu X. Prognostic roles of human equilibrative transporter 1 (hENT-1) and ribonucleoside reductase subunit M1 (RRM1) in resected pancreatic cancer. Cancer. 2011;117:3126–3134. doi: 10.1002/cncr.25883. PubMed DOI

Vychytilova-Faltejskova P., Kiss I., Klusova S., Hlavsa J., Prochazka V., Kala Z., Mazanec J., Hausnerova J., Kren L., Hermanova M., et al. MiR-21, miR-34a, miR-198 and miR-217 as diagnostic and prognostic biomarkers for chronic pancreatitis and pancreatic ductal adenocarcinoma. Diagn. Pathol. 2015;10:38. doi: 10.1186/s13000-015-0272-6. PubMed DOI PMC

Kalloger S.E., Riazy M., Tessier-Cloutier B., Karasinska J.M., Gao D., Peixoto R.D., Samimi S., Chow C., Wong H.L., Mackey J.R., et al. A predictive analysis of the SP120 and 10D7G2 antibodies for human equilibrative nucleoside transporter 1 (hENT1) in pancreatic ductal adenocarcinoma treated with adjuvant gemcitabine. J. Pathol. Clin. Res. 2017;3:179–190. doi: 10.1002/cjp2.75. PubMed DOI PMC

Dang L., Fan X., Chaudhry A., Wang M., Gaiano N., Eberhart C.G. Notch3 signaling initiates choroid plexus tumor formation. Oncogene. 2006;25:487–491. doi: 10.1038/sj.onc.1209074. PubMed DOI

Ashida R., Nakata B., Shigekawa M., Mizuno N., Sawaki A., Hirakawa K., Arakawa T., Yamao K. Gemcitabine sensitivity-related mRNA expression in endoscopic ultrasound-guided fine-needle aspiration biopsy of unresectable pancreatic cancer. J. Exp. Clin. Cancer Res. 2009;28:83. doi: 10.1186/1756-9966-28-83. PubMed DOI PMC

Eto K., Kawakami H., Kuwatani M., Kudo T., Abe Y., Kawahata S., Takasawa A., Fukuoka M., Matsuno Y., Asaka M., et al. Human equilibrative nucleoside transporter 1 and Notch3 can predict gemcitabine effects in patients with unresectable pancreatic cancer. Br. J. Cancer. 2013;108:1488–1494. doi: 10.1038/bjc.2013.108. PubMed DOI PMC

Dillhoff M., Liu J., Frankel W., Croce C., Bloomston M. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J. Gastrointest. Surg. 2008;12:2171–2176. doi: 10.1007/s11605-008-0584-x. PubMed DOI PMC

Mann C.D., Bastianpillai C., Neal C.P., Masood M.M., Jones D.J., Teichert F., Singh R., Karpova E., Berry D.P., Manson M.M. Notch3 and HEY-1 as prognostic biomarkers in pancreatic adenocarcinoma. PLoS ONE. 2012;7:e51119. doi: 10.1371/journal.pone.0051119. PubMed DOI PMC

Zhou J.X., Zhou L., Li Q.J., Feng W., Wang P.M., Li E.F., Gong W.J., Kou M.W., Gou W.T., Yang Y.L. Association between high levels of Notch3 expression and high invasion and poor overall survival rates in pancreatic ductal adenocarcinoma. Oncol. Rep. 2016;36:2893–2901. doi: 10.3892/or.2016.5079. PubMed DOI

Song H.Y., Wang Y., Lan H., Zhang Y.X. Expression of Notch receptors and their ligands in pancreatic ductal adenocarcinoma. Exp. Ther. Med. 2018;16:53–60. doi: 10.3892/etm.2018.6172. PubMed DOI PMC

Volinia S., Calin G.A., Liu C.G., Ambs S., Cimmino A., Petrocca F., Visone R., Iorio M., Roldo C., Ferracin M., et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA. 2006;103:2257–2261. doi: 10.1073/pnas.0510565103. PubMed DOI PMC

Bloomston M., Frankel W.L., Petrocca F., Volinia S., Alder H., Hagan J.P., Liu C.G., Bhatt D., Taccioli C., Croce C.M. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA. 2007;297:1901–1908. doi: 10.1001/jama.297.17.1901. PubMed DOI

Gerard C., Fagnoni P., Vienot A., Borg C., Limat S., Daval F., Calais F., Vardanega J., Jary M., Nerich V. A systematic review of economic evaluation in pancreatic ductal adenocarcinoma. Eur. J. Cancer. 2017;86:207–216. doi: 10.1016/j.ejca.2017.08.035. PubMed DOI

Ansari D., Tingstedt B., Andersson R. Pancreatic cancer—Cost for overtreatment with gemcitabine. Acta Oncol. 2013;52:1146–1151. doi: 10.3109/0284186X.2012.744140. PubMed DOI

Bordeaux J., Welsh A., Agarwal S., Killiam E., Baquero M., Hanna J., Anagnostou V., Rimm D. Antibody validation. Biotechniques. 2010;48:197–209. doi: 10.2144/000113382. PubMed DOI PMC

Voskuil J.L. The challenges with the validation of research antibodies. F1000Research. 2017;6:161. doi: 10.12688/f1000research.10851.1. PubMed DOI PMC

Uson P.L.S.J., Macarenco R., Oliveira F.N., Smaletz O. Impact of pathology review for decision therapy in localized prostate cancer. Clin. Med. Insights Pathol. 2017;10 doi: 10.1177/1179555717740130. PubMed DOI PMC

Middleton L.P., Feeley T.W., Albright H.W., Walters R., Hamilton S.H. Second-opinion pathologic review is a patient safety mechanism that helps reduce error and decrease waste. J. Oncol. Pract. 2014;10:275–280. doi: 10.1200/JOP.2013.001204. PubMed DOI

Hidalgo M., Cascinu S., Kleeff J., Labianca R., Lohr J.M., Neoptolemos J., Real F.X., van Laethem J.L., Heinemann V. Addressing the challenges of pancreatic cancer: Future directions for improving outcomes. Pancreatology. 2015;15:8–18. doi: 10.1016/j.pan.2014.10.001. PubMed DOI

Ansari D., Tingstedt B., Andersson B., Holmquist F., Sturesson C., Williamsson C., Sasor A., Borg D., Bauden M., Andersson R. Pancreatic cancer: Yesterday, today and tomorrow. Future Oncol. 2016;12:1929–1946. doi: 10.2217/fon-2016-0010. PubMed DOI

Spratlin J., Sangha R., Glubrecht D., Dabbagh L., Young J.D., Dumontet C., Cass C., Lai R., Mackey J.R. The absence of human equilibrative nucleoside transporter 1 is associated with reduced survival in patients with gemcitabine-treated pancreas adenocarcinoma. Clin. Cancer Res. 2004;10:6956–6961. doi: 10.1158/1078-0432.CCR-04-0224. PubMed DOI

Nordh S., Ansari D., Andersson R. hENT1 expression is predictive of gemcitabine outcome in pancreatic cancer: A systematic review. World J. Gastroenterol. 2014;20:8482–8490. doi: 10.3748/wjg.v20.i26.8482. PubMed DOI PMC

Marechal R., Mackey J.R., Lai R., Demetter P., Peeters M., Polus M., Cass C.E., Young J., Salmon I., Deviere J., et al. Human equilibrative nucleoside transporter 1 and human concentrative nucleoside transporter 3 predict survival after adjuvant gemcitabine therapy in resected pancreatic adenocarcinoma. Clin. Cancer Res. 2009;15:2913–2919. doi: 10.1158/1078-0432.CCR-08-2080. PubMed DOI

Baldwin S., Kukar M., Gabriel E., Attwood K., Wilkinson N., Hochwald S.N., Kuvshinoff B. Pancreatic cancer metastatic to a limited number of lymph nodes has no impact on outcome. Hpb. 2016;18:523–528. doi: 10.1016/j.hpb.2016.02.004. PubMed DOI PMC

Demir I.E., Jager C., Schlitter A.M., Konukiewitz B., Stecher L., Schorn S., Tieftrunk E., Scheufele F., Calavrezos L., Schirren R., et al. R0 versus R1 resection matters after pancreaticoduodenectomy, and less after distal or total pancreatectomy for pancreatic cancer. Ann. Surg. 2018;268:1058–1068. doi: 10.1097/SLA.0000000000002345. PubMed DOI

Valsangkar N.P., Bush D.M., Michaelson J.S., Ferrone C.R., Wargo J.A., Lillemoe K.D., Fernandez-del Castillo C., Warshaw A.L., Thayer S.P. N0/N1, PNL, or LNR? The effect of lymph node number on accurate survival prediction in pancreatic ductal adenocarcinoma. J. Gastrointest. Surg. 2013;17:257–266. doi: 10.1007/s11605-012-1974-7. PubMed DOI PMC

Lim J.Y., Cho J.H., Lee S.J., Lee D.K., Yoon D.S., Cho J.Y. Gemcitabine combined with capecitabine compared to gemcitabine with or without erlotinib as first-line chemotherapy in patients with advanced pancreatic cancer. Cancer Res. Treat. 2015;47:266–273. doi: 10.4143/crt.2013.158. PubMed DOI PMC

Vandesompele J., de Preter K., Pattyn F., Poppe B., van Roy N., de Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034-1. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC

Hou Y., Zhang H., Miranda L., Lin S. Serious overestimation in quantitative PCR by circular (supercoiled) plasmid standard: Microalgal pcna as the model gene. PLoS ONE. 2010;5:e9545. doi: 10.1371/journal.pone.0009545. PubMed DOI PMC

Pfaffl M.W., Hageleit M. Validities of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real-time RT-PCR. Biotechnol. Lett. 2001;23:275–282. doi: 10.1023/A:1005658330108. DOI

Lin C.H., Chen Y.C., Pan T.M. Quantification bias caused by plasmid DNA conformation in quantitative real-time PCR assay. PLoS ONE. 2011;6:e29101. doi: 10.1371/journal.pone.0029101. PubMed DOI PMC

Cecka F., Jon B., Subrt Z., Ferko A. Solid pseudopapillary tumour of the pancreas: Diagnosis, treatment, and prognosis. Acta Chir. Belg. 2014;114:58–62. doi: 10.1080/00015458.2014.11680978. PubMed DOI

Hlavsa J., Cecka F., Zaruba P., Zajak J., Gurlich R., Strnad R., Pavlik T., Kala Z., Lovecek M. Tumor grade as significant prognostic factor in pancreatic cancer: Validation of a novel TNMG staging system. Neoplasma. 2018;65:637–643. doi: 10.4149/neo_2018_171012N650. PubMed DOI

Lidsky M.E., Sun Z., Nussbaum D.P., Adam M.A., Speicher P.J., Blazer D.G., 3rd Going the extra mile: Improved survival for pancreatic cancer patients traveling to high-volume centers. Ann. Surg. 2017;266:333–338. doi: 10.1097/SLA.0000000000001924. PubMed DOI

Blackford A., Serrano O.K., Wolfgang C.L., Parmigiani G., Jones S., Zhang X., Parsons D.W., Lin J.C., Leary R.J., Eshleman J.R., et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin. Cancer Res. 2009;15:4674–4679. doi: 10.1158/1078-0432.CCR-09-0227. PubMed DOI PMC

Donahue T.R., Tran L.M., Hill R., Li Y., Kovochich A., Calvopina J.H., Patel S.G., Wu N., Hindoyan A., Farrell J.J., et al. Integrative survival-based molecular profiling of human pancreatic cancer. Clin. Cancer Res. 2012;18:1352–1363. doi: 10.1158/1078-0432.CCR-11-1539. PubMed DOI PMC

Newhook T.E., Blais E.M., Lindberg J.M., Adair S.J., Xin W., Lee J.K., Papin J.A., Parsons J.T., Bauer T.W. A thirteen-gene expression signature predicts survival of patients with pancreatic cancer and identifies new genes of interest. PLoS ONE. 2014;9:e105631. doi: 10.1371/journal.pone.0105631. PubMed DOI PMC

Stratford J.K., Bentrem D.J., Anderson J.M., Fan C., Volmar K.A., Marron J.S., Routh E.D., Caskey L.S., Samuel J.C., Der C.J., et al. A six-gene signature predicts survival of patients with localized pancreatic ductal adenocarcinoma. PLoS Med. 2010;7:e1000307. doi: 10.1371/journal.pmed.1000307. PubMed DOI PMC

Liu Y., Beyer A., Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016;165:535–550. doi: 10.1016/j.cell.2016.03.014. PubMed DOI

Aust D.E., Terdiman J.P., Willenbucher R.F., Chew K., Ferrell L., Florendo C., Molinaro-Clark A., Baretton G.B., Lohrs U., Waldman F.M. Altered distribution of β-catenin, and its binding proteins E-cadherin and APC, in ulcerative colitis-related colorectal cancers. Mod. Pathol. 2001;14:29–39. doi: 10.1038/modpathol.3880253. PubMed DOI

Sajic T., Ciuffa R., Lemos V., Xu P., Leone V., Li C., Williams E.G., Makris G., Banaei-Esfahani A., Heikenwalder M., et al. A new class of protein biomarkers based on subcellular distribution: Application to a mouse liver cancer model. Sci. Rep. 2019;9:6913. doi: 10.1038/s41598-019-43091-z. PubMed DOI PMC

Emanuelli A., Ayyathan D.M., Koganti P., Shah P.A., Apel-Sarid L., Paolini B., Detroja R., Frenkel-Morgenstern M., Blank M. Altered expression and localization of tumor suppressive E3 ubiquitin ligase SMURF2 in human prostate and breast cancer. Cancers. 2019;11:556. doi: 10.3390/cancers11040556. PubMed DOI PMC

Miyamoto Y., Maitra A., Ghosh B., Zechner U., Argani P., Iacobuzio-Donahue C.A., Sriuranpong V., Iso T., Meszoely I.M., Wolfe M.S., et al. Notch mediates TGFα-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell. 2003;3:565–576. doi: 10.1016/S1535-6108(03)00140-5. PubMed DOI

Vo K., Amarasinghe B., Washington K., Gonzalez A., Berlin J., Dang T.P. Targeting notch pathway enhances rapamycin antitumor activity in pancreas cancers through PTEN phosphorylation. Mol. Cancer. 2011;10:138. doi: 10.1186/1476-4598-10-138. PubMed DOI PMC

Gnoni A., Licchetta A., Scarpa A., Azzariti A., Brunetti A.E., Simone G., Nardulli P., Santini D., Aieta M., Delcuratolo S., et al. Carcinogenesis of pancreatic adenocarcinoma: Precursor lesions. Int. J. Mol. Sci. 2013;14:19731–19762. doi: 10.3390/ijms141019731. PubMed DOI PMC

Cerveny L., Ptackova Z., Ceckova M., Karahoda R., Karbanova S., Jiraskova L., Greenwood S.L., Glazier J.D., Staud F. Equilibrative nucleoside transporter 1 (ENT1, SLC29A1) facilitates transfer of the antiretroviral drug abacavir across the placenta. Drug Metab. Dispos. 2018;46:1817–1826. doi: 10.1124/dmd.118.083329. PubMed DOI

del Santo B., Valdes R., Mata J., Felipe A., Casado F.J., Pastor-Anglada M. Differential expression and regulation of nucleoside transport systems in rat liver parenchymal and hepatoma cells. Hepatology. 1998;28:1504–1511. doi: 10.1002/hep.510280609. PubMed DOI

Jiraskova L., Cerveny L., Karbanova S., Ptackova Z., Staud F. Expression of concentrative nucleoside transporters (SLC28A) in the human placenta: effects of gestation age and prototype differentiation-affecting agents. Mol. Pharm. 2018;15:2732–2741. doi: 10.1021/acs.molpharmaceut.8b00238. PubMed DOI

Hulse A.M., Cai J.J. Genetic variants contribute to gene expression variability in humans. Genetics. 2013;193:95–108. doi: 10.1534/genetics.112.146779. PubMed DOI PMC

Edge S.B., Compton C.C. The American Joint Committee on Cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 2010;17:1471–1474. doi: 10.1245/s10434-010-0985-4. PubMed DOI

Verbeke C.S. Resection margins and R1 rates in pancreatic cancer—Are we there yet? Histopathology. 2008;52:787–796. doi: 10.1111/j.1365-2559.2007.02935.x. PubMed DOI

Menon K.V., Gomez D., Smith A.M., Anthoney A., Verbeke C.S. Impact of margin status on survival following pancreatoduodenectomy for cancer: The Leeds Pathology Protocol (LEEPP) Hpb. 2009;11:18–24. doi: 10.1111/j.1477-2574.2008.00013.x. PubMed DOI PMC

Kotorashvili A., Ramnauth A., Liu C., Lin J., Ye K., Kim R., Hazan R., Rohan T., Fineberg S., Loudig O. Effective DNA/RNA co-extraction for analysis of microRNAs, mRNAs, and genomic DNA from formalin-fixed paraffin-embedded specimens. PLoS ONE. 2012;7:e34683. doi: 10.1371/journal.pone.0034683. PubMed DOI PMC

Abrahamsen H.N., Steiniche T., Nexo E., Hamilton-Dutoit S.J., Sorensen B.S. Towards quantitative mRNA analysis in paraffin-embedded tissues using real-time reverse transcriptase-polymerase chain reaction: A methodological study on lymph nodes from melanoma patients. J. Mol. Diagn. 2003;5:34–41. doi: 10.1016/S1525-1578(10)60449-7. PubMed DOI PMC

Antonov J., Goldstein D.R., Oberli A., Baltzer A., Pirotta M., Fleischmann A., Altermatt H.J., Jaggi R. Reliable gene expression measurements from degraded RNA by quantitative real-time PCR depend on short amplicons and a proper normalization. Lab. Investig. 2005;85:1040–1050. doi: 10.1038/labinvest.3700303. PubMed DOI

Szafranska A.E., Davison T.S., Shingara J., Doleshal M., Riggenbach J.A., Morrison C.D., Jewell S., Labourier E. Accurate molecular characterization of formalin-fixed, paraffin-embedded tissues by microRNA expression profiling. J. Mol. Diagn. 2008;10:415–423. doi: 10.2353/jmoldx.2008.080018. PubMed DOI PMC

Hashimoto K., Ueno H., Ikeda M., Kojima Y., Hagihara A., Kondo S., Morizane C., Okusaka T. Do recurrent and metastatic pancreatic cancer patients have the same outcomes with gemcitabine treatment? Oncology. 2009;77:217–223. doi: 10.1159/000236022. PubMed DOI

Metindir J., Dilek G.B., Pak I. Staining characterization by immunohistochemistry of tumor cancer antigen in patients with endometrial cancer. Eur. J. Gynaecol. Oncol. 2008;29:489–492. PubMed

Clark T.G., Bradburn M.J., Love S.B., Altman D.G. Survival analysis part I: Basic concepts and first analyses. Br. J. Cancer. 2003;89:232–238. doi: 10.1038/sj.bjc.6601118. PubMed DOI PMC

Bradburn M.J., Clark T.G., Love S.B., Altman D.G. Survival analysis part II: Multivariate data analysis—An introduction to concepts and methods. Br. J. Cancer. 2003;89:431–436. doi: 10.1038/sj.bjc.6601119. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...