DNA polymerase α-primase facilitates PARP inhibitor-induced fork acceleration and protects BRCA1-deficient cells against ssDNA gaps
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
20-03457Y
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
LM2023050
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
PubMed
39191785
PubMed Central
PMC11350149
DOI
10.1038/s41467-024-51667-1
PII: 10.1038/s41467-024-51667-1
Knihovny.cz E-resources
- MeSH
- DNA-Directed DNA Polymerase metabolism genetics MeSH
- DNA Polymerase I MeSH
- DNA Primase * metabolism genetics MeSH
- DNA, Single-Stranded * metabolism genetics MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Poly(ADP-ribose) Polymerase Inhibitors * pharmacology MeSH
- BRCA1 Protein * metabolism genetics MeSH
- DNA Replication * drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- BRCA1 protein, human MeSH Browser
- DNA polymerase alpha-primase MeSH Browser
- DNA-Directed DNA Polymerase MeSH
- DNA Polymerase I MeSH
- DNA Primase * MeSH
- DNA, Single-Stranded * MeSH
- Poly(ADP-ribose) Polymerase Inhibitors * MeSH
- BRCA1 Protein * MeSH
PARP inhibitors (PARPi), known for their ability to induce replication gaps and accelerate replication forks, have become potent agents in anticancer therapy. However, the molecular mechanism underlying PARPi-induced fork acceleration has remained elusive. Here, we show that the first PARPi-induced effect on DNA replication is an increased replication fork rate, followed by a secondary reduction in origin activity. Through the systematic knockdown of human DNA polymerases, we identify POLA1 as mediator of PARPi-induced fork acceleration. This acceleration depends on both DNA polymerase α and primase activities. Additionally, the depletion of POLA1 increases the accumulation of replication gaps induced by PARP inhibition, sensitizing cells to PARPi. BRCA1-depleted cells are especially susceptible to the formation of replication gaps under POLA1 inhibition. Accordingly, BRCA1 deficiency sensitizes cells to POLA1 inhibition. Thus, our findings establish the POLA complex as important player in PARPi-induced fork acceleration and provide evidence that lagging strand synthesis represents a targetable vulnerability in BRCA1-deficient cells.
See more in PubMed
Conti, C. et al. Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol. Biol. Cell18, 3059–3067 (2007). 10.1091/mbc.e06-08-0689 PubMed DOI PMC
Loeb, L. A. & Monnat, R. J. Jr. DNA polymerases and human disease. Nat. Rev. Genet.9, 594–604 (2008). 10.1038/nrg2345 PubMed DOI
Lange, S. S., Takata, K. & Wood, R. D. DNA polymerases and cancer. Nat. Rev. Cancer11, 96–110 (2011). 10.1038/nrc2998 PubMed DOI PMC
Burgers, P. M. J. & Kunkel, T. A. Eukaryotic DNA replication fork. Annu. Rev. Biochem.86, 417–438 (2017). 10.1146/annurev-biochem-061516-044709 PubMed DOI PMC
Azarm, K. & Smith, S. Nuclear PARPs and genome integrity. Genes Dev.34, 285–301 (2020). 10.1101/gad.334730.119 PubMed DOI PMC
Ray Chaudhuri, A. & Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol.18, 610–621 (2017). 10.1038/nrm.2017.53 PubMed DOI PMC
Rose, M., Burgess, J. T., O’Byrne, K., Richard, D. J. & Bolderson, E. PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance. Front. Cell Dev. Biol.8, 564601 (2020). 10.3389/fcell.2020.564601 PubMed DOI PMC
Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature434, 913–917 (2005). 10.1038/nature03443 PubMed DOI
Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature434, 917–921 (2005). 10.1038/nature03445 PubMed DOI
Maya-Mendoza, A. et al. High speed of fork progression induces DNA replication stress and genomic instability. Nature559, 279–284 (2018). 10.1038/s41586-018-0261-5 PubMed DOI
Cong, K. et al. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol. Cell81, 3128–3144 e3127 (2021). 10.1016/j.molcel.2021.06.011 PubMed DOI PMC
Cantor, S. B. Revisiting the BRCA-pathway through the lens of replication gap suppression: “Gaps determine therapy response in BRCA mutant cancer”. DNA Repair107, 103209 (2021). 10.1016/j.dnarep.2021.103209 PubMed DOI PMC
Vaitsiankova, A. et al. PARP inhibition impedes the maturation of nascent DNA strands during DNA replication. Nat. Struct. Mol. Biol. 29, 329–338 (2022). PubMed PMC
Tirman, S., Cybulla, E., Quinet, A., Meroni, A. & Vindigni, A. PRIMPOL ready, set, reprime! Crit. Rev. Biochem. Mol. Biol.56, 17–30 (2021). 10.1080/10409238.2020.1841089 PubMed DOI PMC
Quinet, A. et al. PRIMPOL-mediated adaptive response suppresses replication fork reversal in BRCA-deficient cells. Mol. Cell77, 461–474.e469 (2020). 10.1016/j.molcel.2019.10.008 PubMed DOI PMC
Bai, G. et al. HLTF promotes fork reversal, limiting replication stress resistance and preventing multiple mechanisms of unrestrained DNA synthesis. Mol. Cell78, 1237–1251.e1237 (2020). 10.1016/j.molcel.2020.04.031 PubMed DOI PMC
Gonzalez-Acosta, D. et al. PrimPol-mediated repriming facilitates replication traverse of DNA interstrand crosslinks. EMBO J.40, e106355 (2021). 10.15252/embj.2020106355 PubMed DOI PMC
Piberger, A. L. et al. PrimPol-dependent single-stranded gap formation mediates homologous recombination at bulky DNA adducts. Nat. Commun.11, 5863 (2020). 10.1038/s41467-020-19570-7 PubMed DOI PMC
Rodriguez-Acebes, S., Mouron, S. & Mendez, J. Uncoupling fork speed and origin activity to identify the primary cause of replicative stress phenotypes. J. Biol. Chem.293, 12855–12861 (2018). 10.1074/jbc.RA118.003740 PubMed DOI PMC
Genois, M. M. et al. CARM1 regulates replication fork speed and stress response by stimulating PARP1. Mol. Cell81, 784–800.e8 (2020). PubMed PMC
Giansanti, C. et al. MDM2 binds and ubiquitinates PARP1 to enhance DNA replication fork progression. Cell Rep.39, 110879 (2022). 10.1016/j.celrep.2022.110879 PubMed DOI
Han, T. et al. The antitumor toxin CD437 is a direct inhibitor of DNA polymerase alpha. Nat. Chem. Biol.12, 511–515 (2016). 10.1038/nchembio.2082 PubMed DOI PMC
Ercilla, A. et al. Physiological tolerance to ssDNA enables strand uncoupling during DNA replication. Cell Rep.30, 2416–2429.e2417 (2020). 10.1016/j.celrep.2020.01.067 PubMed DOI
Holzer, S. et al. Structural basis for inhibition of human primase by arabinofuranosyl nucleoside analogues fludarabine and vidarabine. ACS Chem. Biol.14, 1904–1912 (2019). 10.1021/acschembio.9b00367 PubMed DOI PMC
Kang, Z. et al. BRCA2 associates with MCM10 to suppress PRIMPOL-mediated repriming and single-stranded gap formation after DNA damage. Nat. Commun.12, 5966 (2021). 10.1038/s41467-021-26227-6 PubMed DOI PMC
Panzarino, N. J. et al. Replication gaps underlie BRCA-deficiency and therapy response. Cancer Res.81, 1388–1397 (2020). PubMed PMC
Simoneau, A., Xiong, R. & Zou, L. The trans cell cycle effects of PARP inhibitors underlie their selectivity toward BRCA1/2-deficient cells. Genes Dev.35, 1271–1289 (2021). 10.1101/gad.348479.121 PubMed DOI PMC
Taglialatela, A. et al. REV1-Polzeta maintains the viability of homologous recombination-deficient cancer cells through mutagenic repair of PRIMPOL-dependent ssDNA gaps. Mol. Cell81, 4008–4025.e7 (2021). PubMed PMC
Tirman, S. et al. Temporally distinct post-replicative repair mechanisms fill PRIMPOL-dependent ssDNA gaps in human cells. Mol. Cell81, 4026–4040.e4028 (2021). 10.1016/j.molcel.2021.09.013 PubMed DOI PMC
Paes Dias, M. et al. Loss of nuclear DNA ligase III reverts PARP inhibitor resistance in BRCA1/53BP1 double-deficient cells by exposing ssDNA gaps. Mol. Cell81, 4692–4708.e4699 (2021). 10.1016/j.molcel.2021.09.005 PubMed DOI PMC
Kunkel, T. A., Hamatake, R. K., Motto-Fox, J., Fitzgerald, M. P. & Sugino, A. Fidelity of DNA polymerase I and the DNA polymerase I-DNA primase complex from Saccharomyces cerevisiae. Mol. Cell Biol.9, 4447–4458 (1989). PubMed PMC
Zimmermann, M. et al. CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature559, 285–289 (2018). 10.1038/s41586-018-0291-z PubMed DOI PMC
Nayak, S. et al. Inhibition of the translesion synthesis polymerase REV1 exploits replication gaps as a cancer vulnerability. Sci. Adv.6, eaaz7808 (2020). 10.1126/sciadv.aaz7808 PubMed DOI PMC
Thakar, T. et al. Lagging strand gap suppression connects BRCA-mediated fork protection to nucleosome assembly through PCNA-dependent CAF-1 recycling. Nat. Commun.13, 5323 (2022). 10.1038/s41467-022-33028-y PubMed DOI PMC
Valli, C. et al. Atypical retinoids ST1926 and CD437 are S-phase-specific agents causing DNA double-strand breaks: significance for the cytotoxic and antiproliferative activity. Mol. Cancer Ther.7, 2941–2954 (2008). 10.1158/1535-7163.MCT-08-0419 PubMed DOI
Johnson, N. et al. Stabilization of mutant BRCA1 protein confers PARP inhibitor and platinum resistance. Proc. Natl Acad. Sci. USA110, 17041–17046 (2013). 10.1073/pnas.1305170110 PubMed DOI PMC
Takata, K. et al. Conserved overlapping gene arrangement, restricted expression, and biochemical activities of DNA polymerase nu (POLN). J. Biol. Chem.290, 24278–24293 (2015). 10.1074/jbc.M115.677419 PubMed DOI PMC
Oxidative DNA Damage and Arterial Hypertension in Light of Current ESC Guidelines