Emetine blocks DNA replication via proteosynthesis inhibition not by targeting Okazaki fragments
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36260751
PubMed Central
PMC9463495
DOI
10.26508/lsa.202201560
PII: 5/12/e202201560
Knihovny.cz E-zdroje
- MeSH
- chromatin MeSH
- DNA genetika MeSH
- emetin * farmakologie MeSH
- jednovláknová DNA * MeSH
- replikace DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- DNA MeSH
- emetin * MeSH
- jednovláknová DNA * MeSH
- Okazaki fragments MeSH Prohlížeč
DNA synthesis of the leading and lagging strands works independently and cells tolerate single-stranded DNA generated during strand uncoupling if it is protected by RPA molecules. Natural alkaloid emetine is used as a specific inhibitor of lagging strand synthesis, uncoupling leading and lagging strand replication. Here, by analysis of lagging strand synthesis inhibitors, we show that despite emetine completely inhibiting DNA replication: it does not induce the generation of single-stranded DNA and chromatin-bound RPA32 (CB-RPA32). In line with this, emetine does not activate the replication checkpoint nor DNA damage response. Emetine is also an inhibitor of proteosynthesis and ongoing proteosynthesis is essential for the accurate replication of DNA. Mechanistically, we demonstrate that the acute block of proteosynthesis by emetine temporally precedes its effects on DNA replication. Thus, our results are consistent with the hypothesis that emetine affects DNA replication by proteosynthesis inhibition. Emetine and mild POLA1 inhibition prevent S-phase poly(ADP-ribosyl)ation. Collectively, our study reveals that emetine is not a specific lagging strand synthesis inhibitor with implications for its use in molecular biology.
Zobrazit více v PubMed
Bryant HE, Petermann E, Schultz N, Jemth AS, Loseva O, Issaeva N, Johansson F, Fernandez S, McGlynn P, Helleday T (2009) PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J 28: 2601–2615. 10.1038/emboj.2009.206 PubMed DOI PMC
Burgers PMJ, Kunkel TA (2017) Eukaryotic DNA replication fork. Annu Rev Biochem 86: 417–438. 10.1146/annurev-biochem-061516-044709 PubMed DOI PMC
Burgers PM (2009) Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem 284: 4041–4045. 10.1074/jbc.r800062200 PubMed DOI PMC
Burhans WC, Vassilev LT, Wu J, Sogo JM, Nallaseth FS, DePamphilis ML (1991) Emetine allows identification of origins of mammalian DNA replication by imbalanced DNA synthesis, not through conservative nucleosome segregation. EMBO J 10: 4351–4360. 10.1002/j.1460-2075.1991.tb05013.x PubMed DOI PMC
Chaudhuri AR, Nussenzweig A (2017) The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol 18: 610–621. 10.1038/nrm.2017.53 PubMed DOI PMC
Cong K, Peng M, Kousholt AN, Lee WTC, Lee S, Nayak S, Krais J, VanderVere-Carozza PS, Pawelczak KS, Calvo J, et al. (2021) Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol Cell 81: 3128–3144.e7. 10.1016/j.molcel.2021.07.015 PubMed DOI PMC
Ercilla A, Benada J, Amitash S, Zonderland G, Baldi G, Somyajit K, Ochs F, Costanzo V, Lukas J, Toledo L (2020) Physiological tolerance to ssDNA enables strand uncoupling during DNA replication. Cell Rep 30: 2416–2429.e7. 10.1016/j.celrep.2020.01.067 PubMed DOI
Frankum J, Moudry P, Brough R, Hodny Z, Ashworth A, Bartek J, Lord CJ (2015) Complementary genetic screens identify the E3 ubiquitin ligase CBLC, as a modifier of PARP inhibitor sensitivity. Oncotarget 6: 10746–10758. 10.18632/oncotarget.3628 PubMed DOI PMC
Grollman AP (1968) Inhibitors of protein biosynthesis. V. Effects of emetine on protein and nucleic acid biosynthesis in HeLa cells. J Biol Chem 243: 4089–4094. 10.1016/s0021-9258(18)93283-7 PubMed DOI
Grollman AP (1966) Structural basis for inhibition of protein synthesis by emetine and cycloheximide based on an analogy between ipecac alkaloids and glutarimide antibiotics. Proc Natl Acad Sci U S A 56: 1867–1874. 10.1073/pnas.56.6.1867 PubMed DOI PMC
Gupta RS, Siminovitch L (1976) The isolation and preliminary characterization of somatic cell mutants resistant to the protein synthesis inhibitor-emetine. Cell 9: 213–219. 10.1016/0092-8674(76)90112-4 PubMed DOI
Handeli S, Klar A, Meuth M, Cedar H (1989) Mapping replication units in animal cells. Cell 57: 909–920. 10.1016/0092-8674(89)90329-2 PubMed DOI
Hanzlikova H, Caldecott KW (2019) Perspectives on PARPs in S phase. Trends Genet 35: 412–422. 10.1016/j.tig.2019.03.008 PubMed DOI
Hanzlikova H, Kalasova I, Demin AA, Pennicott LE, Cihlarova Z, Caldecott KW (2018) The importance of poly(ADP-ribose) polymerase as a sensor of unligated Okazaki fragments during DNA replication. Mol Cell 71: 319–331.e3. 10.1016/j.molcel.2018.06.004 PubMed DOI PMC
Henriksson S, Groth P, Gustafsson N, Helleday T (2018) Distinct mechanistic responses to replication fork stalling induced by either nucleotide or protein deprivation. Cell Cycle 17: 568–579. 10.1080/15384101.2017.1387696 PubMed DOI PMC
Maya-Mendoza A, Moudry P, Merchut-Maya JM, Lee M, Strauss R, Bartek J (2018) High speed of fork progression induces DNA replication stress and genomic instability. Nature 559: 279–284. 10.1038/s41586-018-0261-5 PubMed DOI
Mejlvang J, Feng Y, Alabert C, Neelsen KJ, Jasencakova Z, Zhao X, Lees M, Sandelin A, Pasero P, Lopes M, et al. (2014) New histone supply regulates replication fork speed and PCNA unloading. J Cell Biol 204: 29–43. 10.1083/jcb.201305017 PubMed DOI PMC
Moudry P, Chroma K, Bursac S, Volarevic S, Bartek J (2022) RNA-interference screen for p53 regulators unveils a role of WDR75 in ribosome biogenesis. Cell Death Differ 29: 687–696. 10.1038/s41418-021-00882-0 PubMed DOI PMC
Sugimura K, Takebayashi Si, Taguchi H, Takeda S, Okumura K (2008) PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA. J Cell Biol 183: 1203–1212. 10.1083/jcb.200806068 PubMed DOI PMC
Thakar T, Leung W, Nicolae CM, Clements KE, Shen B, Bielinsky AK, Moldovan GL (2020) Ubiquitinated-PCNA protects replication forks from DNA2-mediated degradation by regulating Okazaki fragment maturation and chromatin assembly. Nat Commun 11: 2147. 10.1038/s41467-020-16096-w PubMed DOI PMC
Toledo LI, Altmeyer M, Rask MB, Lukas C, Larsen DH, Povlsen LK, Bekker-Jensen S, Mailand N, Bartek J, Lukas J (2013) ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155: 1088–1103. 10.1016/j.cell.2013.10.043 PubMed DOI
Wang Z, Yang L (2020) Turning the tide: Natural products and natural-product-inspired Chemicals as potential counters to SARS-CoV-2 infection. Front Pharmacol 11: 1013. 10.3389/fphar.2020.01013 PubMed DOI PMC
Xiao G, Lundine D, Annor GK, Canar J, Ellison V, Polotskaia A, Donabedian PL, Reiner T, Khramtsova GF, Olopade OI, et al. (2020) Gain-of-Function mutant p53 R273H interacts with replicating DNA and PARP1 in breast cancer. Cancer Res 80: 394–405. 10.1158/0008-5472.can-19-1036 PubMed DOI PMC
Yamashita S, Tanaka M, Ida C, Kouyama K, Nakae S, Matsuki T, Tsuda M, Shirai T, Kamemura K, Nishi Y, et al. (2022) Physiological levels of poly(ADP-ribose) during the cell cycle regulate HeLa cell proliferation. Exp Cell Res 417: 113163. 10.1016/j.yexcr.2022.113163 PubMed DOI PMC