Perspectives on PARPs in S Phase
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
27322
Cancer Research UK - United Kingdom
PubMed
31036342
DOI
10.1016/j.tig.2019.03.008
PII: S0168-9525(19)30054-X
Knihovny.cz E-zdroje
- Klíčová slova
- DNA replication stress, DNA strand break repair, Okazaki fragment, PARP1, PARP2, poly(ADP-ribose),
- MeSH
- aktivace enzymů MeSH
- cílená molekulární terapie MeSH
- lidé MeSH
- multigenová rodina MeSH
- náchylnost k nemoci MeSH
- nestabilita genomu MeSH
- oprava DNA MeSH
- PARP inhibitory farmakologie terapeutické užití MeSH
- poly(ADP-ribosa)polymerasy genetika metabolismus MeSH
- poškození DNA MeSH
- proliferace buněk MeSH
- protinádorové látky farmakologie terapeutické užití MeSH
- replikace DNA MeSH
- S fáze fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- PARP inhibitory MeSH
- poly(ADP-ribosa)polymerasy MeSH
- protinádorové látky MeSH
Accurate copying of DNA during S phase is essential for genome stability and cell viability. During genome duplication, the progression of the DNA replication machinery is challenged by limitations in nucleotide supply and physical barriers in the DNA template that include naturally occurring DNA lesions and secondary structures that are difficult to replicate. To ensure correct and complete replication of the genome, cells have evolved several mechanisms that protect DNA replication forks and thus maintain genome integrity and stability during S phase. One class of enzymes that have recently emerged as important in this process, and therefore as promising targets in anticancer therapy, are the poly(ADP-ribose) polymerases (PARPs). We review here the roles of these enzymes during DNA replication as well as their impact on genome stability and cellular viability in normal and cancer cells.
Citace poskytuje Crossref.org
Dispensability of HPF1 for cellular removal of DNA single-strand breaks
Emetine blocks DNA replication via proteosynthesis inhibition not by targeting Okazaki fragments
PARP inhibition impedes the maturation of nascent DNA strands during DNA replication
Neuronal enhancers are hotspots for DNA single-strand break repair
Pathogenic ARH3 mutations result in ADP-ribose chromatin scars during DNA strand break repair