Dispensability of HPF1 for cellular removal of DNA single-strand breaks
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
22-00885S
Czech Science Foundation
186122
Charles University
L200522301
Czech Academy of Sciences
RVO - 68378050
institutional funding
LM2023050
MEYS
68378050-KAV-NPUI
RVO
CEP - Centrální evidence projektů
MR/W024128/1
Medical Research Council - United Kingdom
PubMed
39162207
PubMed Central
PMC11472159
DOI
10.1093/nar/gkae708
PII: 7736811
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- chromatin metabolismus MeSH
- DNA vazebné proteiny metabolismus genetika MeSH
- histony metabolismus MeSH
- jaderné proteiny metabolismus genetika MeSH
- jednořetězcové zlomy DNA * MeSH
- lidé MeSH
- oprava DNA * MeSH
- poly-ADP-ribosylace MeSH
- poly(ADP-ribosa)polymerasa 1 * metabolismus genetika MeSH
- poly(ADP-ribosa)polymerasy metabolismus genetika MeSH
- protein XRCC1 metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chromatin MeSH
- DNA vazebné proteiny MeSH
- histony MeSH
- HPF1 protein, human MeSH Prohlížeč
- jaderné proteiny MeSH
- PARP1 protein, human MeSH Prohlížeč
- poly(ADP-ribosa)polymerasa 1 * MeSH
- poly(ADP-ribosa)polymerasy MeSH
- protein XRCC1 MeSH
- XRCC1 protein, human MeSH Prohlížeč
In response to DNA damage, the histone PARylation factor 1 (HPF1) regulates PARP1/2 activity, facilitating serine ADP-ribosylation of chromatin-associated factors. While PARP1/2 are known for their role in DNA single-strand break repair (SSBR), the significance of HPF1 in this process remains unclear. Here, we investigated the impact of HPF1 deficiency on cellular survival and SSBR following exposure to various genotoxins. We found that HPF1 loss did not generally increase cellular sensitivity to agents that typically induce DNA single-strand breaks (SSBs) repaired by PARP1. SSBR kinetics in HPF1-deficient cells were largely unaffected, though its absence partially influenced the accumulation of SSB intermediates after exposure to specific genotoxins in certain cell lines, likely due to altered ADP-ribosylation of chromatin. Despite reduced serine mono-ADP-ribosylation, HPF1-deficient cells maintained robust poly-ADP-ribosylation at SSB sites, possibly reflecting PARP1 auto-poly-ADP-ribosylation at non-serine residues. Notably, poly-ADP-ribose chains were sufficient to recruit the DNA repair factor XRCC1, which may explain the relatively normal SSBR capacity in HPF1-deficient cells. These findings suggest that HPF1 and histone serine ADP-ribosylation are largely dispensable for PARP1-dependent SSBR in response to genotoxic stress, highlighting the complexity of mechanisms that maintain genomic stability and chromatin remodeling.
Faculty of Science Charles University Prague Prague 2128 43 Czech Republic
Genome Damage and Stability Centre University of Sussex Falmer Brighton BN1 9RQ UK
Institute of Animal Pathology Vetsuisse Faculty University of Bern Bern 3012 Switzerland
Zobrazit více v PubMed
Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993; 362:709–715. PubMed
Caldecott K.W. DNA single-strand break repair and human genetic disease. Trends Cell Biol. 2022; 32:733–745. PubMed
Pommier Y., Sun Y., Huang S.N., Nitiss J.L.. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 2016; 17:703–721. PubMed PMC
Demple B., Harrison L.. Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem. 1994; 63:915–948. PubMed
Caldecott K.W. Mammalian DNA base excision repair: dancing in the moonlight. DNA Repair (Amst.). 2020; 93:102921. PubMed
Hanzlikova H., Kalasova I., Demin A.A., Pennicott L.E., Cihlarova Z., Caldecott K.W.. The importance of poly(ADP-ribose) polymerase as a sensor of unligated Okazaki fragments during DNA replication. Mol. Cell. 2018; 71:319–331. PubMed PMC
Hanzlikova H., Caldecott K.W.. Perspectives on PARPs in S Phase. Trends Genet. 2019; 35:412–422. PubMed
Vaitsiankova A., Burdova K., Sobol M., Gautam A., Benada O., Hanzlikova H., Caldecott K.W.. PARP inhibition impedes the maturation of nascent DNA strands during DNA replication. Nat. Struct. Mol. Biol. 2022; 29:329–338. PubMed PMC
Langelier M.F., Eisemann T., Riccio A.A., Pascal J.M.. PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification. Curr. Opin. Struct. Biol. 2018; 53:187–198. PubMed PMC
Azarm K., Smith S.. Nuclear PARPs and genome integrity. Genes Dev. 2020; 34:285–301. PubMed PMC
Ame J.C., Rolli V., Schreiber V., Niedergang C., Apiou F., Decker P., Muller S., Hoger T., Menissier-de Murcia J., de Murcia G.. PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Biol. Chem. 1999; 274:17860–17868. PubMed
Johansson M. A human poly(ADP-ribose) polymerase gene family (ADPRTL): cDNA cloning of two novel poly(ADP-ribose) polymerase homologues. Genomics. 1999; 57:442–445. PubMed
Hanzlikova H., Gittens W., Krejcikova K., Zeng Z., Caldecott K.W.. Overlapping roles for PARP1 and PARP2 in the recruitment of endogenous XRCC1 and PNKP into oxidized chromatin. Nucleic Acids Res. 2017; 45:2546–2557. PubMed PMC
Breslin C., Hornyak P., Ridley A., Rulten S.L., Hanzlikova H., Oliver A.W., Caldecott K.W.. The XRCC1 phosphate-binding pocket binds poly (ADP-ribose) and is required for XRCC1 function. Nucleic Acids Res. 2015; 43:6934–6944. PubMed PMC
Langelier M.F., Planck J.L., Roy S., Pascal J.M.. Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science. 2012; 336:728–732. PubMed PMC
Rack J.G.M., Palazzo L., Ahel I.. ADP-ribosyl)hydrolases: structure, function, and biology. Genes Dev. 2020; 34:263–284. PubMed PMC
Slade D., Dunstan M.S., Barkauskaite E., Weston R., Lafite P., Dixon N., Ahel M., Leys D., Ahel I.. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature. 2011; 477:616–620. PubMed PMC
Hanzlikova H., Prokhorova E., Krejcikova K., Cihlarova Z., Kalasova I., Kubovciak J., Sachova J., Hailstone R., Brazina J., Ghosh S.et al. .. Pathogenic ARH3 mutations result in ADP-ribose chromatin scars during DNA strand break repair. Nat. Commun. 2020; 11:3391. PubMed PMC
Fontana P., Bonfiglio J.J., Palazzo L., Bartlett E., Matic I., Ahel I.. Serine ADP-ribosylation reversal by the hydrolase ARH3. eLife. 2017; 6:e28533. PubMed PMC
Sharifi R., Morra R., Appel C.D., Tallis M., Chioza B., Jankevicius G., Simpson M.A., Matic I., Ozkan E., Golia B.et al. .. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J. 2013; 32:1225–1237. PubMed PMC
Gibbs-Seymour I., Fontana P., Rack J.G.M., Ahel I.. HPF1/C4orf27 is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity. Mol. Cell. 2016; 62:432–442. PubMed PMC
Bonfiglio J.J., Fontana P., Zhang Q., Colby T., Gibbs-Seymour I., Atanassov I., Bartlett E., Zaja R., Ahel I., Matic I.. Serine ADP-ribosylation depends on HPF1. Mol. Cell. 2017; 65:932–940. PubMed PMC
Hendriks I.A., Buch-Larsen S.C., Prokhorova E., Elsborg J.D., Rebak A., Zhu K., Ahel D., Lukas C., Ahel I., Nielsen M.L.. The regulatory landscape of the human HPF1- and ARH3-dependent ADP-ribosylome. Nat. Commun. 2021; 12:5893. PubMed PMC
Suskiewicz M.J., Zobel F., Ogden T.E.H., Fontana P., Ariza A., Yang J.C., Zhu K., Bracken L., Hawthorne W.J., Ahel D.et al. .. HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Nature. 2020; 579:598–602. PubMed PMC
Palazzo L., Leidecker O., Prokhorova E., Dauben H., Matic I., Ahel I.. Serine is the major residue for ADP-ribosylation upon DNA damage. eLife. 2018; 7:e34334. PubMed PMC
Buch-Larsen S.C., Rebak A., Hendriks I.A., Nielsen M.L.. Temporal and site-specific ADP-ribosylation dynamics upon different genotoxic stresses. Cells. 2021; 10:2927. PubMed PMC
Bartlett E., Bonfiglio J.J., Prokhorova E., Colby T., Zobel F., Ahel I., Matic I.. Interplay of histone marks with serine ADP-ribosylation. Cell Rep. 2018; 24:3488–3502. PubMed PMC
Prokhorova E., Zobel F., Smith R., Zentout S., Gibbs-Seymour I., Schutzenhofer K., Peters A., Groslambert J., Zorzini V., Agnew T.et al. .. Serine-linked PARP1 auto-modification controls PARP inhibitor response. Nat. Commun. 2021; 12:4055. PubMed PMC
Hoch N.C., Hanzlikova H., Rulten S.L., Tetreault M., Komulainen E., Ju L., Hornyak P., Zeng Z., Gittens W., Rey S.A.et al. .. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature. 2017; 541:87–91. PubMed PMC
Polo L.M., Xu Y., Hornyak P., Garces F., Zeng Z., Hailstone R., Matthews S.J., Caldecott K.W., Oliver A.W., Pearl L.H.. Efficient single-strand break repair requires binding to both poly(ADP-ribose) and DNA by the central BRCT domain of XRCC1. Cell Rep. 2019; 26:573–581. PubMed PMC
Mistrik M., Vesela E., Furst T., Hanzlikova H., Frydrych I., Gursky J., Majera D., Bartek J.. Cells and stripes: a novel quantitative photo-manipulation technique. Sci. Rep. 2016; 6:19567. PubMed PMC
Nowak K., Rosenthal F., Karlberg T., Butepage M., Thorsell A.G., Dreier B., Grossmann J., Sobek J., Imhof R., Luscher B.et al. .. Engineering Af1521 improves ADP-ribose binding and identification of ADP-ribosylated proteins. Nat. Commun. 2020; 11:5199. PubMed PMC
Serrano-Benitez A., Wells S.E., Drummond-Clarke L., Russo L.C., Thomas J.C., Leal G.A., Farrow M., Edgerton J.M., Balasubramanian S., Yang M.et al. .. Unrepaired base excision repair intermediates in template DNA strands trigger replication fork collapse and PARP inhibitor sensitivity. EMBO J. 2023; 42:e113190. PubMed PMC
Leidecker O., Bonfiglio J.J., Colby T., Zhang Q., Atanassov I., Zaja R., Palazzo L., Stockum A., Ahel I., Matic I.. Serine is a new target residue for endogenous ADP-ribosylation on histones. Nat. Chem. Biol. 2016; 12:998–1000. PubMed PMC
Larsen S.C., Hendriks I.A., Lyon D., Jensen L.J., Nielsen M.L.. Systems-wide analysis of serine ADP-ribosylation reveals widespread occurrence and site-specific overlap with phosphorylation. Cell Rep. 2018; 24:2493–2505. PubMed
Smith R., Zentout S., Rother M., Bigot N., Chapuis C., Mihut A., Zobel F.F., Ahel I., van Attikum H., Timinszky G.et al. .. HPF1-dependent histone ADP-ribosylation triggers chromatin relaxation to promote the recruitment of repair factors at sites of DNA damage. Nat. Struct. Mol. Biol. 2023; 30:678–691. PubMed
Fisher A.E., Hochegger H., Takeda S., Caldecott K.W.. Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase. Mol. Cell. Biol. 2007; 27:5597–5605. PubMed PMC
El-Khamisy S.F., Masutani M., Suzuki H., Caldecott K.W.. A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res. 2003; 31:5526–5533. PubMed PMC
Rudolph J., Roberts G., Muthurajan U.M., Luger K.. HPF1 and nucleosomes mediate a dramatic switch in activity of PARP1 from polymerase to hydrolase. eLife. 2021; 10:e65773. PubMed PMC
Bacic L., Gaullier G., Sabantsev A., Lehmann L.C., Brackmann K., Dimakou D., Halic M., Hewitt G., Boulton S.J., Deindl S.. Structure and dynamics of the chromatin remodeler ALC1 bound to a PARylated nucleosome. eLife. 2021; 10:e65773. PubMed PMC
Hewitt G., Borel V., Segura-Bayona S., Takaki T., Ruis P., Bellelli R., Lehmann L.C., Sommerova L., Vancevska A., Tomas-Loba A.et al. .. Defective ALC1 nucleosome remodeling confers PARPi sensitization and synthetic lethality with HRD. Mol. Cell. 2021; 81:767–783. PubMed PMC
Mohapatra J., Tashiro K., Beckner R.L., Sierra J., Kilgore J.A., Williams N.S., Liszczak G.. Serine ADP-ribosylation marks nucleosomes for ALC1-dependent chromatin remodeling. eLife. 2021; 10:e71502. PubMed PMC
Abplanalp J., Leutert M., Frugier E., Nowak K., Feurer R., Kato J., Kistemaker H.V.A., Filippov D.V., Moss J., Caflisch A.et al. .. Proteomic analyses identify ARH3 as a serine mono-ADP-ribosylhydrolase. Nat. Commun. 2017; 8:2055. PubMed PMC
Prokhorova E., Agnew T., Wondisford A.R., Tellier M., Kaminski N., Beijer D., Holder J., Groslambert J., Suskiewicz M.J., Zhu K.et al. .. Unrestrained poly-ADP-ribosylation provides insights into chromatin regulation and human disease. Mol. Cell. 2021; 81:2640–2655. PubMed PMC