Cells and Stripes: A novel quantitative photo-manipulation technique
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26777522
PubMed Central
PMC4726120
DOI
10.1038/srep19567
PII: srep19567
Knihovny.cz E-zdroje
- MeSH
- biosenzitivní techniky * MeSH
- konfokální mikroskopie MeSH
- kontrolní body buněčného cyklu účinky léků účinky záření MeSH
- lasery škodlivé účinky MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- oprava DNA MeSH
- poškození DNA * účinky léků účinky záření MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Laser micro-irradiation is a technology widely used in the DNA damage response, checkpoint signaling, chromatin remodeling and related research fields, to assess chromatin modifications and recruitment of diverse DNA damage sensors, mediators and repair proteins to sites of DNA lesions. While this approach has aided numerous discoveries related to cell biology, maintenance of genome integrity, aging and cancer, it has so far been limited by a tedious manual definition of laser-irradiated subcellular regions, with the ensuing restriction to only a small number of cells treated and analyzed in a single experiment. Here, we present an improved and versatile alternative to the micro-irradiation approach: Quantitative analysis of photo-manipulated samples using innovative settings of standard laser-scanning microscopes. Up to 200 cells are simultaneously exposed to a laser beam in a defined pattern of collinear rays. The induced striation pattern is then automatically evaluated by a simple algorithm, which provides a quantitative assessment of various laser-induced phenotypes in live or fixed cells. Overall, this new approach represents a more robust alternative to existing techniques, and provides a versatile tool for a wide range of applications in biomedicine.
Danish Cancer Society Research Center Copenhagen Denmark
Institute of Molecular Genetics of the ASCR v v i Prague Czech Republic
Zobrazit více v PubMed
Kong X. et al.. Comparative analysis of different laser systems to study cellular responses to DNA damage in mammalian cells. Nucleic acids research 37, e68, 10.1093/nar/gkp221 (2009). PubMed DOI PMC
Dinant C. et al.. Activation of multiple DNA repair pathways by sub-nuclear damage induction methods. Journal of cell science 120, 2731–2740, 10.1242/jcs.004523 (2007). PubMed DOI
Ishikawa-Ankerhold H. C., Ankerhold R. & Drummen G. P. Advanced fluorescence microscopy techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules (Basel, Switzerland) 17, 4047–4132, 10.3390/molecules17044047 (2012). PubMed DOI PMC
Britton S. et al.. DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic acids research 42, 9047–9062, 10.1093/nar/gku601 (2014). PubMed DOI PMC
Lukas C., Falck J., Bartkova J., Bartek J. & Lukas J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nature cell biology 5, 255–260, 10.1038/ncb945 (2003). PubMed DOI
Galanty Y. et al.. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature 462, 935–939, 10.1038/nature08657 (2009). PubMed DOI PMC
Bekker-Jensen S. et al.. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. The Journal of cell biology 173, 195–206, 10.1083/jcb.200510130 (2006). PubMed DOI PMC
Bekker-Jensen S., Lukas C., Melander F., Bartek J. & Lukas J. Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1. The Journal of cell biology 170, 201–211, 10.1083/jcb.200503043 (2005). PubMed DOI PMC
Jackson S. P. & Bartek J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078, 10.1038/nature08467 (2009). PubMed DOI PMC
Lukas C. et al.. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. The EMBO journal 23, 2674–2683, 10.1038/sj.emboj.7600269 (2004). PubMed DOI PMC
Lukas J., Lukas C. & Bartek J. More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nature cell biology 13, 1161–1169, 10.1038/ncb2344 (2011). PubMed DOI
Stucki M. & Jackson S. P. gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA repair 5, 534–543, 10.1016/j.dnarep.2006.01.012 (2006). PubMed DOI
Coster G. & Goldberg M. The cellular response to DNA damage: a focus on MDC1 and its interacting proteins. Nucleus (Austin, Tex.) 1, 166–178, 10.4161/nucl.1.2.11176 (2010). PubMed DOI PMC
Doil C. et al.. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136, 435–446, 10.1016/j.cell.2008.12.041 (2009). PubMed DOI
Panier S. & Boulton S. J. Double-strand break repair: 53BP1 comes into focus. Nature reviews. Molecular cell biology 15, 7–18, 10.1038/nrm3719 (2014). PubMed DOI
Kim H. & D’Andrea A. D. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes & development 26, 1393–1408, 10.1101/gad.195248.112 (2012). PubMed DOI PMC
Xu G. et al.. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 521, 541–544, 10.1038/nature14328 (2015). PubMed DOI PMC
Toledo L. I. et al.. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155, 1088–1103, 10.1016/j.cell.2013.10.043 (2013). PubMed DOI
Epe B. DNA damage spectra induced by photosensitization. Photochemical & photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology 11, 98–106, 10.1039/c1pp05190c (2012). PubMed DOI
Miller K. M. et al.. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nature structural & molecular biology 17, 1144–1151, 10.1038/nsmb.1899 (2010). PubMed DOI PMC
Fujii Y. et al.. Comparison of the bromodeoxyuridine-mediated sensitization effects between low-LET and high-LET ionizing radiation on DNA double-strand breaks. Oncol Rep 29, 2133–2139, 10.3892/or.2013.2354 (2013). PubMed DOI
Dinant C. et al.. Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage. Molecular cell 51, 469–479, 10.1016/j.molcel.2013.08.007 (2013). PubMed DOI
Chirnomas D. et al.. Chemosensitization to cisplatin by inhibitors of the Fanconi anemia/BRCA pathway. Molecular cancer therapeutics 5, 952–961, 10.1158/1535-7163.mct-05-0493 (2006). PubMed DOI
Reaper P. M. et al.. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nature chemical biology 7, 428–430, 10.1038/nchembio.573 (2011). PubMed DOI
King C. et al.. Characterization and preclinical development of LY2603618: a selective and potent Chk1 inhibitor. Investigational new drugs 32, 213–226, 10.1007/s10637-013-0036-7 (2014). PubMed DOI
Wang G., Bhoopalan V., Wang D., Wang L. & Xu X. The effect of caffeine on cisplatin-induced apoptosis of lung cancer cells. Experimental hematology & oncology 4, 5, 10.1186/2162-3619-4-5 (2015). PubMed DOI PMC
Gurung R. L., Lim H. K., Venkatesan S., Lee P. S. & Hande M. P. Targeting DNA-PKcs and telomerase in brain tumour cells. Molecular cancer 13, 232, 10.1186/1476-4598-13-232 (2014). PubMed DOI PMC
Hopkins T. A. et al.. Mechanistic Dissection of PARP1 Trapping and the Impact on In Vivo Tolerability and Efficacy of PARP Inhibitors. Molecular cancer research : MCR 13, 1465–1477, 10.1158/1541-7786.mcr-15-0191-t (2015). PubMed DOI
Hickson I. et al.. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer research 64, 9152–9159, 10.1158/0008-5472.can-04-2727 (2004). PubMed DOI
Lund-Andersen C., Patzke S., Nahse-Kumpf V. & Syljuasen R. G. PLK1-inhibition can cause radiosensitization or radioresistance dependent on the treatment schedule. Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology 110, 355–361, 10.1016/j.radonc.2013.12.014 (2014). PubMed DOI
Liu Y. et al.. Targeting aurora kinases limits tumour growth through DNA damage-mediated senescence and blockade of NF-kappaB impairs this drug-induced senescence. EMBO molecular medicine 5, 149–166, 10.1002/emmm.201201378 (2013). PubMed DOI PMC
Jekimovs C. et al.. Chemotherapeutic compounds targeting the DNA double-strand break repair pathways: the good, the bad, and the promising. Frontiers in oncology 4, 86, 10.3389/fonc.2014.00086 (2014). PubMed DOI PMC
Muraki K., Han L., Miller D. & Murnane J. P. Processing by MRE11 is involved in the sensitivity of subtelomeric regions to DNA double-strand breaks. Nucleic acids research 43, 7911–7930, 10.1093/nar/gkv714 (2015). PubMed DOI PMC
Dispensability of HPF1 for cellular removal of DNA single-strand breaks