FEN1 is critical for rapid single-strand break repair in G1 phase
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
MR/W024128/1
UK Medical Research Council
25-15199S
Czech Science Foundation
68378050
Czech Science Foundation
Light Microscopy Core Facility
LM2023050
MEYS
CZ.02.1.01/0.0/0.0/18_046/0016045
MEYS
CZ.02.01.01/00/23_015/0008205
MEYS
PubMed
40694846
PubMed Central
PMC12282947
DOI
10.1093/nar/gkaf710
PII: 8210581
Knihovny.cz E-zdroje
- MeSH
- "flap" endonukleasy * genetika fyziologie metabolismus MeSH
- buněčné linie MeSH
- DNA vazebné proteiny genetika MeSH
- DNA-topoisomerasy I metabolismus MeSH
- G1 fáze * genetika MeSH
- jednořetězcové zlomy DNA * MeSH
- lidé MeSH
- methylmethansulfonát toxicita MeSH
- oprava DNA * MeSH
- peroxid vodíku farmakologie toxicita MeSH
- protein XRCC1 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- "flap" endonukleasy * MeSH
- DNA vazebné proteiny MeSH
- DNA-topoisomerasy I MeSH
- FEN1 protein, human MeSH Prohlížeč
- methylmethansulfonát MeSH
- peroxid vodíku MeSH
- protein XRCC1 MeSH
- XRCC1 protein, human MeSH Prohlížeč
Flap endonuclease 1 (FEN1)-dependent long-patch repair has been considered a minor sub-pathway of DNA single-strand break repair (SSBR), activated only when short-patch repair is not feasible. However, the significance of long-patch repair in living cells remains unclear. Here, we employed human RPE-1 cells with FEN1 deletion to compare the requirements for short- and long-patch pathways for the rapid repair of various types of DNA single-strand breaks (SSBs). We found that SSBs arising from abortive topoisomerase 1 activity are repaired efficiently without FEN1. In contrast, the rapid repair of SSBs arising during base excision repair following treatment with methyl methanesulphonate (MMS) or following treatment with hydrogen peroxide (H2O2) exhibits an unexpectedly high dependence on FEN1. Indeed, in G1 phase, FEN1 deletion slows the rate of SSBR to a similar or even greater extent than deletion of the short-patch repair proteins XRCC1 or POLβ. As expected, the combined deletion of FEN1 with XRCC1 or POLβ has an additive or synergistic effect, severely attenuating SSBR rates after MMS or H2O2 exposure. These data highlight an unanticipated requirement for FEN1 in the rapid repair of SSBs in human cells, challenging the prevailing view that long-patch repair is a minor sub-pathway of SSBR.
Genome Damage and Stability Centre University of Sussex Falmer Brighton BN1 9RQ United Kingdom
Institute of Animal Pathology Vetsuisse Faculty University of Bern 3012 Bern Switzerland
Zobrazit více v PubMed
Caldecott KW Causes and consequences of DNA single-strand breaks. Trends Biochem Sci. 2024; 49:68–78. 10.1016/j.tibs.2023.11.001. PubMed DOI
Milano L, Gautam A, Caldecott KW DNA damage and transcription stress. Mol Cell. 2024; 84:711–3. 10.1016/j.molcel.2023.11.014. PubMed DOI
Caldecott KW, Ward ME, Nussenzweig A The threat of programmed DNA damage to neuronal genome integrity and plasticity. Nat Genet. 2022; 54:115–20. 10.1038/s41588-021-01001-y. PubMed DOI
Caldecott KW DNA single-strand break repair and human genetic disease. Trends Cell Biol. 2022; 32:733–45. 10.1016/j.tcb.2022.04.010. PubMed DOI
Gohil D, Sarker AH, Roy R Base excision repair: mechanisms and impact in biology, disease, and medicine. Int J Mol Sci. 2023; 24:14186. 10.3390/ijms241814186. PubMed DOI PMC
Abbotts R, Wilson DM Coordination of DNA single strand break repair. Free Radic Biol Med. 2017; 107:228–44. 10.1016/j.freeradbiomed.2016.11.039. PubMed DOI PMC
Kubota Y, Nash RA, Klungland A et al. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. EMBO J. 1996; 15:6662–70. 10.1002/j.1460-2075.1996.tb01056.x. PubMed DOI PMC
Singhal RK, Prasad R, Wilson SH DNA polymerase beta conducts the gap-filling step in uracil-initiated base excision repair in a bovine testis nuclear extract. J Biol Chem. 1995; 270:949–57. 10.1074/jbc.270.2.949. PubMed DOI
Sobol RW, Horton JK, Kühn R et al. Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature. 1996; 379:183–6. 10.1038/379183a0. PubMed DOI
Nicholl ID, Nealon K, Kenny MK Reconstitution of human base excision repair with purified proteins. Biochemistry. 1997; 36:7557–66. 10.1021/bi962950w. PubMed DOI
Fortini P, Pascucci B, Parlanti E et al. Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells. Biochemistry. 1998; 37:3575–80. 10.1021/bi972999h. PubMed DOI
Frosina G, Fortini P, Rossi O et al. Two pathways for base excision repair in mammalian cells. J Biol Chem. 1996; 271:9573–8. 10.1074/jbc.271.16.9573. PubMed DOI
Klungland A, Lindahl T Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 1997; 16:3341–8. 10.1093/emboj/16.11.3341. PubMed DOI PMC
Winters TA, Russell PS, Kohli M et al. Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate. Nucleic Acids Res. 1999; 27:2423–33. 10.1093/nar/27.11.2423. PubMed DOI PMC
Caldecott K, McKeown C, Tucker J et al. An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol Cell Biol. 1994; 14:68–76. PubMed PMC
Caldecott KW, Aoufouchi S, Johnson P et al. XRCC1 polypeptide interacts with DNA polymerase β and possibly poly(ADP-ribose) polymerase, and DNA ligase III is a novel molecular “nick-sensor” PubMed DOI PMC
Cappelli E, Taylor R, Cevasco M et al. Involvement of XRCC1 and DNA ligase III gene products in DNA base excision repair. J Biol Chem. 1997; 272:23970–5. 10.1074/jbc.272.38.23970. PubMed DOI
Whitehouse CJ, Taylor RM, Thistlethwaite A et al. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell. 2001; 104:107–17. 10.1016/S0092-8674(01)00195-7. PubMed DOI
Ahel I, Rass U, El-Khamisy SF et al. The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature. 2006; 443:713–6. 10.1038/nature05164. PubMed DOI
Kim K, Biade S, Matsumoto Y Involvement of flap endonuclease 1 in base excision DNA repair. J Biol Chem. 1998; 273:8842–8. 10.1074/jbc.273.15.8842. PubMed DOI
Levin DS, McKenna AE, Motycka TA et al. Interaction between PCNA and DNA ligase I is critical for joining of Okazaki fragments and long-patch base-excision repair. Curr Biol. 2000; 10:919–S2. 10.1016/S0960-9822(00)00619-9. PubMed DOI
Matsumoto Y, Kim K, Bogenhagen DF Proliferating cell nuclear antigen-dependent abasic site repair in PubMed PMC
Pascucci B, Stucki M, Jónsson ZO et al. Long patch base excision repair with purified human proteins: DNA ligase I as patch size mediator for DNA polymerases δ and ϵ. J Biol Chem. 1999; 274:33696–702. 10.1074/jbc.274.47.33696. PubMed DOI
Dianov G, Price A, Lindahl T Generation of single-nucleotide repair patches following excision of uracil residues from DNA. Mol Cell Biol. 1992; 12:1605–12. PubMed PMC
Dianov G, Bischoff C, Piotrowski J et al. Repair pathways for processing of 8-oxoguanine in DNA by mammalian cell extracts. J Biol Chem. 1998; 273:33811–6. 10.1074/jbc.273.50.33811. PubMed DOI
Nealon K, Nicholl ID, Kenny MK Characterization of the DNA polymerase requirement of human base excision repair. Nucleic Acids Res. 1996; 24:3763–70. 10.1093/nar/24.19.3763. PubMed DOI PMC
Bennett SE, Sung J-S, Mosbaugh DW Fidelity of uracil-initiated base excision DNA repair in DNA polymerase β-proficient and -deficient mouse embryonic fibroblast cell extracts. J Biol Chem. 2001; 276:42588–600. 10.1074/jbc.M106212200. PubMed DOI
Sattler U, Frit P, Salles B et al. Long-patch DNA repair synthesis during base excision repair in mammalian cells. EMBO Rep. 2003; 4:363–7. 10.1038/sj.embor.embor796. PubMed DOI PMC
Wang D, Wu W, Callen E et al. Active DNA demethylation promotes cell fate specification and the DNA damage response. Science. 2022; 378:983–9. 10.1126/science.add9838. PubMed DOI PMC
Wu W, Hill SE, Nathan WJ et al. Neuronal enhancers are hotspots for DNA single-strand break repair. Nature. 2021; 593:440–4. 10.1038/s41586-021-03468-5. PubMed DOI PMC
Fortini P, Parlanti E, Sidorkina OM et al. The type of DNA glycosylase determines the base excision repair pathway in mammalian cells. J Biol Chem. 1999; 274:15230–6. 10.1074/jbc.274.21.15230. PubMed DOI
Matsumoto Y, Kim K Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science. 1995; 269:699–702. 10.1126/science.7624801. PubMed DOI
Sung J-S, DeMott MS, Demple B Long-patch base excision DNA repair of 2-deoxyribonolactone prevents the formation of DNA–protein cross-links with DNA polymerase β. J Biol Chem. 2005; 280:39095–103. 10.1074/jbc.M506480200. PubMed DOI
Vaitsiankova A, Burdova K, Sobol M et al. PARP inhibition impedes the maturation of nascent DNA strands during DNA replication. Nat Struct Mol Biol. 2022; 29:329–38. 10.1038/s41594-022-00747-1. PubMed DOI PMC
Hrychova K, Burdova K, Polackova Z et al. Dispensability of HPF1 for cellular removal of DNA single-strand breaks. Nucleic Acids Res. 2024; 52:10986–98. 10.1093/nar/gkae708. PubMed DOI PMC
Adamowicz M, Hailstone R, Demin AA et al. XRCC1 protects transcription from toxic PARP1 activity during DNA base excision repair. Nat Cell Biol. 2021; 23:1287–98. 10.1038/s41556-021-00792-w. PubMed DOI PMC
Exell JC, Thompson MJ, Finger LD et al. Cellularly active PubMed DOI PMC
Tsutakawa SE, Classen S, Chapados BR et al. Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily. Cell. 2011; 145:198–211. 10.1016/j.cell.2011.03.004. PubMed DOI PMC
Kordon MM, Zarębski M, Solarczyk K et al. STRIDE—a fluorescence method for direct, specific PubMed DOI PMC
Demin AA, Hirota K, Tsuda M et al. XRCC1 prevents toxic PARP1 trapping during DNA base excision repair. Mol Cell. 2021; 81:3018–30. 10.1016/j.molcel.2021.05.009. PubMed DOI PMC
Hanzlikova H, Kalasova I, Demin AA et al. The importance of poly(ADP-ribose) polymerase as a sensor of unligated Okazaki fragments during DNA replication. Mol Cell. 2018; 71:319–31. 10.1016/j.molcel.2018.06.004. PubMed DOI PMC
Pogozelski WK, Tullius TD Oxidative strand scission of nucleic acids: routes initiated by hydrogen abstraction from the sugar moiety. Chem Rev. 1998; 98:1089–108. 10.1021/cr960437i. PubMed DOI
Henner WD, Grunberg SM, Haseltine WA Sites and structure of gamma radiation-induced DNA strand breaks. J Biol Chem. 1982; 257:11750–4. 10.1016/S0021-9258(18)33827-4. PubMed DOI
Henner WD, Grunberg SM, Haseltine WA Enzyme action at 3′ termini of ionizing radiation-induced DNA strand breaks. J Biological Chem. 1983; 258:15198–205. 10.1016/S0021-9258(17)43793-8. PubMed DOI
Henner WD, Rodriguez LO, Hecht SM et al. γ Ray induced deoxyribonucleic acid strand breaks. 3′ Glycolate termini. J Biol Chem. 1983; 258:711–3. 10.1016/S0021-9258(18)33104-1. PubMed DOI