Pathogenic ARH3 mutations result in ADP-ribose chromatin scars during DNA strand break repair
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
T32 GM145427
NIGMS NIH HHS - United States
210634/Z/18/Z
Wellcome Trust - United Kingdom
C35050/A22284
Cancer Research UK - United Kingdom
T32 GM008666
NIGMS NIH HHS - United States
210634
Wellcome Trust - United Kingdom
22284
Cancer Research UK - United Kingdom
MR/P010121/1
Medical Research Council - United Kingdom
Wellcome Trust - United Kingdom
101794
Wellcome Trust - United Kingdom
PubMed
32636369
PubMed Central
PMC7341855
DOI
10.1038/s41467-020-17069-9
PII: 10.1038/s41467-020-17069-9
Knihovny.cz E-zdroje
- MeSH
- adenosindifosfát ribosa chemie MeSH
- chromatin chemie MeSH
- fibroblasty MeSH
- genový knockout MeSH
- glykosidhydrolasy genetika MeSH
- HEK293 buňky MeSH
- histony chemie MeSH
- jednořetězcové zlomy DNA * MeSH
- lidé MeSH
- mutace * MeSH
- nádorové buněčné linie MeSH
- neurodegenerativní nemoci genetika MeSH
- oprava DNA * MeSH
- protein XRCC1 genetika MeSH
- regulace genové exprese MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosindifosfát ribosa MeSH
- ADPRS protein, human MeSH Prohlížeč
- chromatin MeSH
- glykosidhydrolasy MeSH
- histony MeSH
- protein XRCC1 MeSH
- XRCC1 protein, human MeSH Prohlížeč
Neurodegeneration is a common hallmark of individuals with hereditary defects in DNA single-strand break repair; a process regulated by poly(ADP-ribose) metabolism. Recently, mutations in the ARH3 (ADPRHL2) hydrolase that removes ADP-ribose from proteins have been associated with neurodegenerative disease. Here, we show that ARH3-mutated patient cells accumulate mono(ADP-ribose) scars on core histones that are a molecular memory of recently repaired DNA single-strand breaks. We demonstrate that the ADP-ribose chromatin scars result in reduced endogenous levels of important chromatin modifications such as H3K9 acetylation, and that ARH3 patient cells exhibit measurable levels of deregulated transcription. Moreover, we show that the mono(ADP-ribose) scars are lost from the chromatin of ARH3-defective cells in the prolonged presence of PARP inhibition, and concomitantly that chromatin acetylation is restored to normal. Collectively, these data indicate that ARH3 can act as an eraser of ADP-ribose chromatin scars at sites of PARP activity during DNA single-strand break repair.
Center for Molecular Medicine Cologne University of Cologne Cologne 50931 Germany
Rady Children's Institute for Genomic Medicine Rady Children's Hospital San Diego CA 92123 USA
Sir William Dunn School of Pathology University of Oxford Oxford OX1 3RE UK
Zobrazit více v PubMed
Azarm K, Smith S. Nuclear PARPs and genome integrity. Gene Dev. 2020;34:285–301. PubMed PMC
Chaudhuri AR, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 2017;18:610–621. PubMed PMC
Hanzlikova H, Caldecott KW. Perspectives on PARPs in S phase. Trends Genet. 2019;35:412–422. PubMed
Feng X, Koh DW. Roles of poly(ADP-ribose) glycohydrolase in DNA damage and apoptosis. Int. Rev. Cel. Mol. Biol. 2013;304:227–281. PubMed
Davidovic L, Vodenicharov M, Afar EB, Poirier GG. Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp. Cell Res. 2001;268:7–13. PubMed
Abplanalp J, et al. Proteomic analyses identify ARH3 as a serine mono-ADP-ribosylhydrolase. Nat. Commun. 2017;8:2055. PubMed PMC
Fontana P, et al. Serine ADP-ribosylation reversal by the hydrolase ARH3. elife. 2017;6:861. PubMed PMC
Oka S, Kato J, Moss J. Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J. Biol. Chem. 2006;281:705–713. PubMed
Sharifi R, et al. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J. 2013;32:1225–1237. PubMed PMC
Caldecott K. XRCC1 protein; form and function. DNA Repair. 2019;81:102664. PubMed
Hanzlikova H, Gittens W, Krejcikova K, Zeng Z, Caldecott KW. Overlapping roles for PARP1 and PARP2 in the recruitment of endogenous XRCC1 and PNKP into oxidized chromatin. Nucleic Acids Res. 2016;45:2546–2557. PubMed PMC
Caldecott KW. Single-strand break repair and genetic disease. Nat. Rev. Genet. 2008;9:619–631. PubMed
Yoon G, Caldecott KW. Nonsyndromic cerebellar ataxias associated with disorders of DNA single-strand break repair. Handb. Clin. Neurol. 2018;155:105–115. PubMed
O’Connor E, et al. Mutations in XRCC1 cause cerebellar ataxia and peripheral neuropathy. J. Neurol. Neurosurg. Psychiatry. 2018;89:1230–1232. PubMed PMC
Hoch NC, et al. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature. 2016;541:87–91. PubMed PMC
Komulainen, E. et al. Poly(ADP-ribose) polymerase-1 hyperactivity at DNA single-strand breaks triggers seizures and shortened lfespan. Biorxiv10.1101/431916 (2018).
Ghosh SG, et al. Biallelic mutations in ADPRHL2, encoding ADP-ribosylhydrolase 3, lead to a degenerative pediatric stress-induced epileptic ataxia syndrome. Am. J. Hum. Genet. 2018;103:431–439. PubMed PMC
Danhauser K, et al. Bi-allelic ADPRHL2 mutations cause neurodegeneration with developmental delay, ataxia, and axonal neuropathy. Am. J. Hum. Genet. 2018;103:817–825. PubMed PMC
Mashimo M, et al. PARP1 inhibition alleviates injury in ARH3-deficient mice and human cells. JCI Insight. 2019;4:14902. PubMed PMC
Mashimo M, Kato J, Moss J. ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress. Proc. Natl Acad. Sci. USA. 2013;110:18964–18969. PubMed PMC
Fisher AEO, Hochegger H, Takeda S, Caldecott KW. Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase. Mol. Cell Biol. 2007;27:5597–5605. PubMed PMC
Caldecott KW. Protein ADP-ribosylation and the cellular response to DNA strand breaks. DNA Repair. 2014;19:108–113. PubMed
El-Khamisy SF, Masutani M, Suzuki H, Caldecott KW. A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic acids Res. 2003;31:5526–5533. PubMed PMC
Breslin C, et al. The XRCC1 phosphate-binding pocket binds poly (ADP-ribose) and is required for XRCC1 function. Nucleic Acids Res. 2015;43:6934–6944. PubMed PMC
Niere M, et al. ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose) J. Biol. Chem. 2012;287:16088–16102. PubMed PMC
Gibson BA, Conrad LB, Huang D, Kraus WL. Generation and characterization of recombinant antibody-like ADP-ribose binding proteins. Biochemistry. 2017;56:6305–6316. PubMed PMC
Jungmichel S, et al. Proteome-wide identification of poly(ADP-Ribosyl)ation targets in different genotoxic stress responses. Mol. Cell. 2013;52:272–285. PubMed
Leidecker O, et al. Serine is a new target residue for endogenous ADP-ribosylation on histones. Nat. Chem. Biol. 2016;12:998–1000. PubMed PMC
Palazzo L, et al. Serine is the major residue for ADP-ribosylation upon DNA damage. elife. 2018;7:e34334. PubMed PMC
Hanzlikova H, et al. The importance of poly(ADP-Ribose) polymerase as a sensor of unligated Okazaki fragments during DNA replication. Mol. Cell. 2018;71:319–331. PubMed PMC
Lehtiö L, et al. Structural basis for inhibitor specificity in human poly(ADP-ribose) polymerase-3. J. Med. Chem. 2009;52:3108–3111. PubMed
Sedelnikova OA, et al. Role of oxidatively induced DNA lesions in human pathogenesis. Mutat. Res. Rev. Mutat. Res. 2010;704:152–159. PubMed PMC
Bartlett E, et al. Interplay of histone marks with serine ADP-ribosylation. Cell Rep. 2018;24:3488–3502.e5. PubMed PMC
Liszczak G, Diehl KL, Dann GP, Muir TW. Acetylation blocks DNA damage-induced chromatin ADP-ribosylation. Nat. Chem. Biol. 2018;14:837–840. PubMed PMC
Polo LM, et al. Efficient single-strand break repair requires binding to both poly(ADP-Ribose) and DNA by the central BRCT domain of XRCC1. Cell Rep. 2019;26:573–581.e5. PubMed PMC
Breslin C, et al. Measurement of chromosomal DNA single-strand breaks and replication fork progression rates. Methods Enzymol. 2006;409:410–425. PubMed
Grundy GJ, et al. PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2B(Glu2) Nat. Commun. 2016;7:12404. PubMed PMC
Baker J, Faustoferri R, Quivery RG. A modified chromogenic assay for determination of the ratio of free intracellular NAD+/NADH in Streptococcus mutans. Bio Protoc. 2016;6:1–9. PubMed PMC
Zerbino DR, et al. Ensembl 2018. Nucleic Acids Res. 2017;46:D754–D761. PubMed PMC
Kim I-K, Stegeman RA, Brosey CA, Ellenberger T. A quantitative assay reveals ligand specificity of the DNA scaffold repair protein XRCC1 and efficient disassembly of complexes of XRCC1 and the poly(ADP-ribose) polymerase 1 by poly(ADP-ribose) glycohydrolase. J. Biol. Chem. 2015;290:3775–3783. PubMed PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general-purpose program for assigning sequence reads to genomic features. Bioinform Oxf. Engl. 2013;30:923–930. PubMed
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Biorxiv10.1101/002832 (2014). PubMed PMC
Stephens, M. False discovery rates: a new deal. Biostatistics10.1093/biostatistics/kxw041 (2016). PubMed PMC
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14. PubMed PMC
Dispensability of HPF1 for cellular removal of DNA single-strand breaks
PARG-deficient tumor cells have an increased dependence on EXO1/FEN1-mediated DNA repair
XRCC1 protects transcription from toxic PARP1 activity during DNA base excision repair