XRCC1 protein; Form and function
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
694996
European Research Council - International
MR/P010121/1
Medical Research Council - United Kingdom
MRC;P010121/1
Medical Research Council - United Kingdom
CR-UK;C6563/A27322
Cancer Research UK - United Kingdom
PubMed
31324530
DOI
10.1016/j.dnarep.2019.102664
PII: S1568-7864(19)30217-4
Knihovny.cz E-zdroje
- Klíčová slova
- DNA double-strand break (DSB), DNA single-strand break (SSB), Double-strand break repair (DSBR), Non-homologous end-joining (NHEJ), Single-strand break repair (SSBR),
- MeSH
- DNA metabolismus MeSH
- dvouřetězcové zlomy DNA MeSH
- jednořetězcové zlomy DNA MeSH
- lidé MeSH
- oprava DNA * MeSH
- protein XRCC1 metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA MeSH
- protein XRCC1 MeSH
- XRCC1 protein, human MeSH Prohlížeč
The human gene that encodes XRCC1 was cloned nearly thirty years ago but experimental analysis of this fascinating protein is still unveiling new insights into the DNA damage response. XRCC1 is a molecular scaffold protein that interacts with multiple enzymatic components of DNA single-strand break repair (SSBR) including DNA kinase, DNA phosphatase, DNA polymerase, DNA deadenylase, and DNA ligase activities that collectively are capable of accelerating the repair of a broad range of DNA single-strand breaks (SSBs). Arguably the most exciting aspect of XRCC1 function that has emerged in the last few years is its intimate relationship with PARP1 activity and critical role in preventing hereditary neurodegenerative disease. Here, I provide an update on our current understanding of XRCC1, and on the impact of hereditary mutations in this protein and its protein partners on human disease.
Citace poskytuje Crossref.org
XRCC1 protects transcription from toxic PARP1 activity during DNA base excision repair
Parp1 hyperactivity couples DNA breaks to aberrant neuronal calcium signalling and lethal seizures
Neuronal enhancers are hotspots for DNA single-strand break repair
Pathogenic ARH3 mutations result in ADP-ribose chromatin scars during DNA strand break repair