Magnetic Nanomaterials for Arterial Embolization and Hyperthermia of Parenchymal Organs Tumors: A Review

. 2021 Dec 15 ; 11 (12) : . [epub] 20211215

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34947751

Grantová podpora
(8X20041] MULTILATERAL SCIENTIFIC AND TECHNOLOGICAL COOPERATION IN THE DANUBE REGION

Magnetic hyperthermia (MH), proposed by R. K. Gilchrist in the middle of the last century as local hyperthermia, has nowadays become a recognized method for minimally invasive treatment of oncological diseases in combination with chemotherapy (ChT) and radiotherapy (RT). One type of MH is arterial embolization hyperthermia (AEH), intended for the presurgical treatment of primary inoperable and metastasized solid tumors of parenchymal organs. This method is based on hyperthermia after transcatheter arterial embolization of the tumor's vascular system with a mixture of magnetic particles and embolic agents. An important advantage of AEH lies in the double effect of embolotherapy, which blocks blood flow in the tumor, and MH, which eradicates cancer cells. Consequently, only the tumor undergoes thermal destruction. This review introduces the progress in the development of polymeric magnetic materials for application in AEH.

Zobrazit více v PubMed

Sung H., Ferlay J., Siegel R.L., Laversanne M. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI

Myerson R.J., Moros E.G., Diederich C.J., Haemmerich D., Hurwitz M.D., Hsu I.J., McGough R.J., Nau W.H., Straube W.L., Turner P.F., et al. Components of a hyperthermia clinic: Recommendations for staffing, equipment, and treatment monitoring. Int. J. Hyperth. 2014;30:1–5. doi: 10.3109/02656736.2013.861520. PubMed DOI

Datta N.R., Ordonez S.G., Gaipl U.S., Paulides M.M., Crezee H., Gellermann J., Marder D., Puric E., Bodis S. Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and promises for the future. Cancer Treat. Rev. 2015;41:742–753. doi: 10.1016/j.ctrv.2015.05.009. PubMed DOI

Kroesen M., Mulder H.T., van Holthe J.M.L., Aangeenbrug A.A., Mens J.W.M., van Doorn H.C., Paulides M.M., Oomen-de Hoop E., Vernhout R.M., Lutgens L.C., et al. Confirmation of thermal dose as a predictor of local control in cervical carcinoma patients treated with state-of-the-art radiation therapy and hyperthermia. Radiother. Oncol. 2019;140:150–158. doi: 10.1016/j.radonc.2019.06.021. PubMed DOI

Van der Zee J. Heating the patient: A promising approach? Ann. Oncol. 2002;13:1173–1184. doi: 10.1093/annonc/mdf280. PubMed DOI

Van der Zee J., Vujaskovic Z., Kondo M., Sugahara T. Part I. Clinical hyperthermia. The Kadota Fund International Forum 2004—Clinical group consensus. Int. J. Hyperth. 2008;24:111–122. doi: 10.1080/02656730801895058. PubMed DOI PMC

Vorst A.V., Rosen A., Kotsuka Y. RF/Microwave Interaction with Biological Tissues. 1st ed. John Wiley &Sons, Inc.; Hoboken, NJ, USA: 2006. pp. 1–330.

Kok H.P., Cressman E.N.K., Ceelen W., Brace C.L., Ivkov R., Grüll H., Ter Haar G., Wust P., Crezee J. Heating technology for malignant tumors: A review. Int. J. Hyperth. 2020;37:711–741. doi: 10.1080/02656736.2020.1779357. PubMed DOI PMC

Dobšíček Trefná H., Crezee H., Schmidt M., Marder D., Lamprecht U., Ehmann M., Hartmann J., Nadobny J., Gellermann J., Van Holthe N., et al. Quality assurance guidelines for superficial hyperthermia clinical trials: I. Clinical requirements. Int. J. Hyperth. 2017;33:471–482. doi: 10.1080/02656736.2016.1277791. PubMed DOI

Cihoric N., Tsikkinis A., Van Rhoon G., Crezee H., Aebersold D.M., Bodis S., Beck M., Nadobny J., Budach V., Wust P., et al. Hyperthermia-related clinical trials on cancer treatment within the Clinical Trials.gov registry. Int. J. Hyperth. 2015;31:609–614. doi: 10.3109/02656736.2015.1040471. PubMed DOI

Van der Zee J., Van Rhoon G.C. Hyperthermia with radiotherapy and with system therapies. In: Veronesi U., editor. Brest Cancer. Springer; Berlin/Heidelberg, Germany: 2017. pp. 855–862.

Lassche G., Crezee J., Van Herpen C.M.L. Whole-body hyperthermia in combination with systemic therapy in advanced solid malignancies. Crit. Rev. Oncol. Hemat. 2019;139:67–74. doi: 10.1016/j.critrevonc.2019.04.023. PubMed DOI

Lee H., Park H.J., Park C.-S., Oh E.-T., Choi B.-H., Brent W., Le C.K., Song C.W. Response of Breast Cancer Cells and Cancer Stem Cells to Metformin and Hyperthermia Alone or Combined. PLoS ONE. 2014;2:e87979. doi: 10.1371/journal.pone.0087979. PubMed DOI PMC

Song C.W., Park H.J., Lee C.K., Griffin R. Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int. J. Hyperth. 2005;21:761–767. doi: 10.1080/02656730500204487. PubMed DOI

Goéré D., Glehen O., Quenet F., Guilloit J.-M., Bereder J.-M., Lorimier G., Thibaudeau E., Ghouti L., Pinto A., Tuech J.-J., et al. Second-look surgery plus hyperthermic intraperitoneal chemotherapy versus surveillance in patients at high risk of developing colorectal peritoneal metastases (Prophylochip–Prodige 15): A randomised, phase 3 study. Lancet Oncol. 2020;21:1147–1154. doi: 10.1016/S1470-2045(20)30322-3. PubMed DOI

Liang Z., Yang D., Cheng W., Cui G. Clinical study on microwave deep hyperthermia combined with hepatic artery embolisation and portal vein perfusion in the treatment of advanced liver cancer. Acta Med. Mediterr. 2020;36:465–469.

Shabunin A.V., Tavobilov M.M., Grekov D.N., Drozdov P.A. Combined modality treatment for patients with inoperable colorecral liver metastases. Sib. J. Oncol. 2018;17:34–40. doi: 10.21294/1814-4861-2018-17-3-34-40. DOI

Oei A.L., Kok H.P., Oei S.B., Horsman M.R., Stalpers L.J.A., Franken N.A.P., Crezee J. Molecular and biological rationale of hyperthermia as radio- and chemosensitizer. Adv. Drug Deliv. Rev. 2020;163:84–97. doi: 10.1016/j.addr.2020.01.003. PubMed DOI

Dobrodeev A.Y., Tuzikov S.A., Zavyalov A.A., Startseva Z.A. Impact of preoperative thermochemoradiotherapy on surgical outcomes in patients with non-small cell lung cancer. Vopr. Onkol. 2020;66:143–147.

Bakker A., van der Zee J., van Tienhoven G., Kok H.P., Rasch C.R.N., Crezee H. Temperature and thermal dose during radiotherapy and hyperthermia for recurrent breast cancer are related to clinical outcome and thermaltoxicity: A systematic review. Int. J. Hyperth. 2019;36:1023–1038. doi: 10.1080/02656736.2019.1665718. PubMed DOI

Westermann A., Mella O., van der Zee J. Long term survival data of triple modality treatment of stage IIB-III-IVA cervical cancer with combination of radiotherapy, chemotherapy and hyperthermia—An update. Int. J. Hyperth. 2012;28:549–553. doi: 10.3109/02656736.2012.673047. PubMed DOI

Dobšíček Trefná H., Schmidt M., van Rhoon G.C., Kok H.P., Gordeyev S.S., Lamprecht U., Marder D., Nadobny J., Ghadjar P., Abdel-Rahman S., et al. Quality assurance guidelines for interstitial hyperthermia. Int. J. Hyperth. 2019;36:277–294. doi: 10.1080/02656736.2018.1564155. PubMed DOI

Hildebrandt B., Wust P., Ahlers O., Dieing A., Sreenivasa G., Kerner T., Felix R., Riess H. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hemat. 2002;43:33–56. doi: 10.1016/S1040-8428(01)00179-2. PubMed DOI

Roti Roti J.L. Cellular responses to hyperthermia (40–46 C): Cell killing and molecular events. Int. J. Hyperth. 2008;24:3–15. doi: 10.1080/02656730701769841. PubMed DOI

Van den Tempel N., Horsman M.R., Kanaar R. Improving efficacy of hyperthermia in oncology by exploiting biological mechanisms. Int. J. Hyperth. 2016;32:446–454. doi: 10.3109/02656736.2016.1157216. PubMed DOI

Takahashi A. Molecular damage: Hyperthermia alone. In: Kokura S., Toshikazu Y., Takeo O., editors. Hyperthermic Oncology from Bench to Bedside. 1st ed. Springer; Singapore: 2016. pp. 19–32.

Elming P.B., Sørensen B.S., Oei A.L., Frnken N.A.P., Crezee J., Overgaard J., Horsman M.R. Hyperthermia: The optimal treatment to overcome radiation resistant hypoxia. Cancers. 2019;11:60. doi: 10.3390/cancers11010060. PubMed DOI PMC

Dobšíček T.H., Crezee J., Schmidt M., Marder D., Lamprecht U., Ehmann M., Nadobny J., Hartmann J., Lomax N. Quality assurance guidelines for superficial hyperthermia clinical trials. Strahlenther. Onkol. 2017;193:351–366. doi: 10.1007/s00066-017-1106-0. PubMed DOI PMC

Gilchrist R.K., Medal R., Shorey W.D., Hanselman R.C., Parrott J.C., Taylor C.B. Selective inductive heating of lymph nodes. Ann. Surg. 1957;146:596–606. doi: 10.1097/00000658-195710000-00007. PubMed DOI PMC

Johannsen M., Gneveckow U., Eckelt L., Feussner A., Waldofner N., Scholz R., Deger S., Wust P., Loening S.A., Jordan A. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int. J. Hyperth. 2005;21:637–647. doi: 10.1080/02656730500158360. PubMed DOI

Southern P., Pankhurst Q. Commentary on the clinical and preclinical dosage limits of interstitially administered magnetic fluids for therapeutic hyperthermia based on current practice and efficacy models. Int. J. Hyperth. 2017;34:671–686. doi: 10.1080/02656736.2017.1365953. PubMed DOI

Maier-Hauff K., Ulrich F., Nestler D., Niehoff H., Wust P., Thiesen B., Orawa H., Budach V., Jordan A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neuro-Oncol. 2011;103:317–324. doi: 10.1007/s11060-010-0389-0. PubMed DOI PMC

Kobayashi T., Kakimi K., Nakayama E., Jimbow K. Antitumor immunity by magnetic nanoparticle-mediated hyperthermia. Nanomedicine. 2014;9:1715–1726. doi: 10.2217/nnm.14.106. PubMed DOI

Petryk A.A., Giustini A.J., Gottesman R.E., Kaufman P.A., Hoopes P.J. Magnetic nanoparticle hyperthermia enhancement of cisplatin chemotherapy cancer treatment. Int. J. Hyperth. 2013;29:845–851. doi: 10.3109/02656736.2013.825014. PubMed DOI PMC

Attaluri A., Kandala S.K., Wabler M., Zhou H., Cornejo C., Armour M., Hedayati M., Zhang Y., DeWeese T.L., Herman C., et al. Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer. Int. J. Hyperth. 2015;31:359–374. doi: 10.3109/02656736.2015.1005178. PubMed DOI PMC

Spirou S.V., Costa Lima S.A., Bouziotis P., Vranješ-Djuric S., Efthimiadou E.K., Laurenzana A., Barbosa A.I., Garcia-Alonso I., Jones C., Jankovic D., et al. Recommendations for in vitro and in vivo testing of magnetic nanoparticle hyperthermia combined with radiation therapy. Nanomaterials. 2018;8:306. doi: 10.3390/nano8050306. PubMed DOI PMC

Mahmoudi K., Bouras A., Bozec D., Ivkov R., Hadjipanayis C. Magnetic hyperthermia therapy for the treatment of glioblastoma: A review of the therapy’s history, efficacy and application in humans. Int. J. Hyperth. 2018;34:1316–1328. doi: 10.1080/02656736.2018.1430867. PubMed DOI PMC

Rodrigues H.F., Capistrano G., Bakuzis A.F. In vivo magnetic nanoparticle hyperthermia: A review on preclinical studies, low-field nano-heaters, noninvasive thermometry and computer simulations for treatment planning. Int. J. Hyperth. 2020;37:76–99. doi: 10.1080/02656736.2020.1800831. PubMed DOI

Brezovich I.A. Low frequency hyperthermia: Capacitive and ferromagnetic thermoseed methods. In: Paliwal B., Hetzel F.W., Dewhirst M.W., editors. Biological, Physical, and Clinical Aspects of Hyperthermia. Medical Physics Monograph 16. American Institute of Physics; College Park, MI, USA: 1988. pp. 82–111.

Hergt R., Dutz S. Magnetic particle hyperthermia—Biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 2007;311:187–192. doi: 10.1016/j.jmmm.2006.10.1156. DOI

Dutz S., Herg R. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumor therapy. Int. J. Hyperth. 2013;29:790–800. doi: 10.3109/02656736.2013.822993. PubMed DOI

Kozissnik B., Bohorquez A.C., Dobson J., Rinaldi C. Magnetic fluid hyperthermia: Advances, challenges, and opportunity. Int. J. Hyperth. 2013;29:706–714. doi: 10.3109/02656736.2013.837200. PubMed DOI

Dutz S., Clement J.H., Eberbeck D., Gelbrich T., Hergt R., Muller R., Wotschadlo J., Zeisberger M. Ferrofluids of magnetic multicore nanoparticles for biomedical applications. J. Magn. Magn. Mater. 2009;321:1501–1504. doi: 10.1016/j.jmmm.2009.02.073. DOI

Dutz S., Herg R. Magnetic particle hyperthermia—A promising tumour therapy? Nanotechnology. 2014;25:452001. doi: 10.1088/0957-4484/25/45/452001. PubMed DOI

Andreu I., Natividad E. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. Int. J. Hyperth. 2013;29:739–775. doi: 10.3109/02656736.2013.826825. PubMed DOI

Garaio E., Collantes J.M., Plazaola F., Garsia J.A., Castellanos-Rubio I.A. Multifrequency eletromagnetic applicator with an integrated AC magnetometer for magnetic hyperthermia experiments. Meas. Sci. Technol. 2014;25:115702. doi: 10.1088/0957-0233/25/11/115702. DOI

Coffey W.T., Kalmykov Y.P. Thermal fluctuations of magnetic nanoparticles: Fifty years after Brown. J. Appl. Phys. 2010;112:121301. doi: 10.1063/1.4754272. DOI

Endelmann U.M., Shasha C., Teeman E., Slabu I., Krishnan K.M. Predicting size-dependent heating efficiency of magnetic nanoparticles from experi-ment and stochastic Néel-Brown Langevin simulation. J. Magn. Magn. Mater. 2019;471:450–456. doi: 10.1016/j.jmmm.2018.09.041. DOI

Bordelon D.E., Cornejo C., Gruttner C., Westphal F., DeWeese T.L., Ivkov R. Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude magnetic fields. J. Appl. Phys. 2011;109:124904. doi: 10.1063/1.3597820. DOI

Raouf I., Khalid S., Khan A., Lee J., Kim H.S., Kim M.-H. A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges. J. Therm. Biol. 2020;91:102644. doi: 10.1016/j.jtherbio.2020.102644. PubMed DOI PMC

Suleman M., Riaz S., Jalil R. A mathematical modeling approach toward magnetic fluid hyperthermia of cancer and unfolding heating mechanism. J. Therm. Anal. Calorim. 2021;146:1193–1219. doi: 10.1007/s10973-020-10080-8. DOI

Wells J., Ortega D., Steinhoff U., Dutz S., Garaio E., Sandre O., Natividad E., Cruz M.M., Brero F., Southern P., et al. Challenges and recommendations for magnetic hyperthermia characterization measurments. Int. J. Hyperth. 2021;38:447–460. doi: 10.1080/02656736.2021.1892837. PubMed DOI

Kallumadil M., Tada M., Nakagawa T., Abe M., Southern P., Pankhurst Q.A. Suitability of commercial colloids for magnetic hyperthermia. J. Magn. Magn. Mater. 2009;321:1509–1513. doi: 10.1016/j.jmmm.2009.02.075. DOI

Hedayatnasab Z., Abnisa F., Daud W. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater. Des. 2017;123:174–196. doi: 10.1016/j.matdes.2017.03.036. DOI

Barry J.W., Bookstein J.J., Alksne J.F. Ferromagnetic embolization. Radiology. 1981;138:341–349. doi: 10.1148/radiology.138.2.7455113. PubMed DOI

Akuta K., Abe M., Kondo M., Yoshikawa T., Tanaka Y., Yoshida M., Miura T., Nakao N., Onoyama Y., Yamada T., et al. Combined effects of hepatic arterial embolization using degradable stach microspheres (DSM) in hyperthermia for liver cancer. Int. J. Hyperth. 1991;7:231–242. doi: 10.3109/02656739109004993. PubMed DOI

Mauer C.A., Renzulli P., Baer H.U., Mettler D., Uhlschmid G., Neuenschwander P., Suter U.W., Triller J., Zimmermann A. Hepatic artery embolization with a novel radiopaque polymer causes extended liver necrosis in pigs due to occlusion of the concomitant portal vein. J. Hepatol. 2000;32:261–268. doi: 10.1016/S0168-8278(00)80071-9. PubMed DOI

Moroz P., Jones S.K., Gray B.N. Status of hyperthermia in the treatment of advanced liver cancer. J. Surg. Oncol. 2001;77:259–269. doi: 10.1002/jso.1106. PubMed DOI

Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016;1:16014. doi: 10.1038/natrevmats.2016.14. DOI

Moroz P., Jones S.K., Gray B.N. Tumor response to arterial embolization hyperthermia and direct injection hyperthermia in a rabbit liver tumor model. J. Surg. Oncol. 2002;80:149–156. doi: 10.1002/jso.10118. PubMed DOI

Takamatsu S., Matsui O., Gabata T., Kobayashi S., Okuda M., Ougi T., Ikehata Y., Nagano I., Nagaeet H. Selective induction hyperthermia following transcatheter arterial embolization with a mixture of nano-sized magnetic particles (ferucarbotran) and embolic materials: Feasibility study in rabbits. Radiat. Med. 2008;26:179–187. doi: 10.1007/s11604-007-0212-9. PubMed DOI

Attaluri A., Seshadri M., Mirpour S., Wabler M., Marinho T., Furqan M., Zhou H., De Paoli S., Gruettner C., Gilson W., et al. Image-guided thermal therapy with dual-contrast magnetic nanoparticle formulation: A feasibility study. Int. J. Hyperth. 2016;32:543–557. doi: 10.3109/02656736.2016.1159737. PubMed DOI PMC

Gunvén P. Liver embolizations in oncology: A review. Part I. Arterial (chemo) embolizations. Med. Oncol. 2008;25:287–296. doi: 10.1007/s12032-007-0039-3. PubMed DOI

Renard P.E.L., Buchegger F., Petri-Fink A., Bosman F., Rufenacht D., Hofmann H., Doelker E., Jordan O. Local moderate magnetically induced hyperthermia using an implant formed in situ in a mouse tumor model. Int. J. Hyperth. 2009;25:229–239. doi: 10.1080/02656730802713557. PubMed DOI

Granov A.M., Karelin M.I., Granov D.A., Tarazov P.G., Makovetskaya K.N. Method for Treatment of Tumors of Parenchymatous Organs Tumors. 2065734. RU Patent. 1996 August 27;

Karelin M.I. Ph.D. Thesis. The Russian Scientific Centre of Radiology and Surgical Technologies; Moscow, Russia: 1998. Substantiation of X-ray Vascular Ferromagnetic Embolization and Local Hyperthermia in Stage IV Renal Cell Carcinoma. (In Russian)

Granov A.M., Davidov M.I. Interventional Radiology in Oncology—Ways of Development and Perspectives. LLC Publisher; Saint Petersburg, Russia: 2007. pp. 289–297. Tumors of Kidney: Ferromagnetic Embolization. Chapter 8. (In Russian)

Smolkova I.S., Kazantseva N.E., Makoveckaya K.N., Smolka P., Saha P., Granov A.M. Maghemite based silicone composite for arterial embolization hyperthermia. Mat. Sci. Eng. C-Mater. 2015;48:632–641. doi: 10.1016/j.msec.2014.12.046. PubMed DOI

Makoveckaya K.N., Nikolaev G.A., Granov A.M., Tarazov P.G., Kazantseva N.E., Smolkova I.S., Saha P., Treshalina E.M., Yakynina M.N., Choroshavina Y.A., et al. Composition for Embolization and Hyperthermia of Vascular Tumors. 26704464 (C1) RU Patent. 2018 October 23;

Soetaert F., Korangath P., Serantes D., Fiering S., Ivkov R. Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Adv. Drug Deliv. Rev. 2020;163–164:65–83. doi: 10.1016/j.addr.2020.06.025. PubMed DOI PMC

Maier-Hauff K., Rothe R., Scholz R., Gneveckow U., Wust P., Thiesen B., Feussner A., Von Deimling A., Waldoefner N., Felix R., et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme. J. Neuro-Oncol. 2007;81:53–60. doi: 10.1007/s11060-006-9195-0. PubMed DOI

Babo D., Robinson J.K., Islam J., Thurecht K.J., Corrie S.R. Nanoparticle-based medicine: A review of FDA-approved materials and clinical treals to date. Pharm. Res. 2016;33:2373–2387. doi: 10.1007/s11095-016-1958-5. PubMed DOI

Granov A.M., Muratov O.V., Frolov V.F. Problems in the local hyperthermia of inductively heated embolized tissues. Theor. Found. Chem. Eng. 2002;36:63–66. doi: 10.1023/A:1013901625389. DOI

Zhao L.Y., Liu J.Y., Ouang W.W., Li-Dan-Ye L.L., Tang J.T. Magnetic mediated hyperthermia for cancer treatment: Research progress and clinical trials. Chin. Phys. B. 2013;22:108104. doi: 10.1088/1674-1056/22/10/108104. DOI

Li D., Wang K., Wang X., Li L., Zhao L., Tang J. Magnetic Arterial Embolization Hyperthermia Mediated by Carbonyl Iron Powder for Liver Carcinoma; Proceedings of the World Congress on Medical Physics and Biomedical Engineering; Beijing, China. 26–31 May 2012.

Chikazumi S., Graham C.D. Physics of Ferromagnetism. 2nd ed. Oxford University Press; Oxford, UK: 1999. Part VI Domainstructures; pp. 387–464.

Goodenough J.B. Summary of losses in magnetic materials. IEEE Trans. Magn. 2002;38:3398–3408. doi: 10.1109/TMAG.2002.802741. DOI

Spaldin N.A. Magnetic Materials: Fundamentals and Applications. Cambrige University Press; Cambridge, UK: 2011. pp. 3–270.

Dunlop D.J. The rock magnetism of fine particles. Phys. Earth Planet. Inter. 1981;26:1–26. doi: 10.1016/0031-9201(81)90093-5. DOI

Moskowitz B.M. Environmental Magnetism Workshop (IRM) Volume 279. University of Minnesota; Minneapolis, MN, USA: 1991. Hithhiker’s Guide to Magnetism; pp. 1–48.

Roberts A.P., Almeida T.P., Church N.S., Harrison R.J., Heslop D., Li Y., Li J., Muxworthy A.R., Williams W., Zhao X. Resolving the origin of pseudo-single domain magnetic behavior. J. Geophys. Res.-Sol. Earth. 2017;122:9534–9558. doi: 10.1002/2017JB014860. DOI

Gatel C.H., Bonilla F.J., Meffre A., Snoeck E., Warot-Fonrose B., Chaudret B., Lacroix L.M., Blon T. Size-Specific Spin Configurations in Single Iron Nanomagnet: From Flower to Exotic Vortices. Nano Lett. 2015;15:6952–6957. doi: 10.1021/acs.nanolett.5b02892. PubMed DOI

Coey J.M.D. Magnetism and Magnetic Materials. 1st ed. Cambridge University Press; Cambridge, UK: 2010. Ferromagnetism and exchange; pp. 128–174.

Krishnan K.M. Biomedical Nanomagnetics: A Spin through Possibilities in Imaging, Diagnostics, and Therapy. IEEE Trans. Magn. 2010;46:2523–2558. doi: 10.1109/TMAG.2010.2046907. PubMed DOI PMC

Dennis C.L., Ivkov R. Physics of heat generation using magnetic nanoparticles for hyperthermia. Int. J. Hyperth. 2013;29:715–729. doi: 10.3109/02656736.2013.836758. PubMed DOI

Mohapatra J., Xing M., Beatty J., Elkins J., Seda T., Mishra S.R., Liu J.P. Enhancing the magnetic and inductive heating properties of Fe3O4 nanoparticles via morphology control. Nanotechnology. 2020;31:275706. doi: 10.1088/1361-6528/ab84a3. PubMed DOI

Nemati Z., Alonso J., Rodrigo I., Das R., Garaio E., García J.A., Orue I., Phan M.H., Srikanth H. Improving the heating efficiency of iron oxide nanoparticles by turning their shape and size. Phys. Chem. C. 2018;122:2367–2381. doi: 10.1021/acs.jpcc.7b10528. DOI

Das R., Alonso J., Porshokouh Z.N., Kalappattil V., Torres D., Phan M.-H., Garaio E., García J.A., Sanchez Llamazares J.L., Srikanth H. Tunable High Aspect Ratio Iron Oxide Nanorods for Enhanced Hyperthermia. Phys. Chem. C. 2016;120:10086–10093. doi: 10.1021/acs.jpcc.6b02006. DOI

Niraula G., Coaquira J.A.H., Zoppellaro G., Goya G.F., Sharma S.K. Engineering shape anisotropy of Fe3O4-Fe2O3 hollow nanoparticles for magnetic hyperthermia. ACS Appl. Nano Mat. 2021;4:3148–3158. doi: 10.1021/acsanm.1c00311. DOI

Gonzales-Weimuller M., Zeisberger M., Krishnan K.M. Size-dependent heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J. Magn. Magn. Mater. 2009;321:1947–1950. doi: 10.1016/j.jmmm.2008.12.017. PubMed DOI PMC

Castellanos-Rubio I., Rodrigo I., Munshi R., Oihane Arriortua J.S., Garitaonandia A.M.-A., Plazaola F., Iñaki O., Pralle A., Insausti M. Outstanding heat loss via nano-octahedra above 20 nm in size: From wustite-rich nanoparticles to magnetite single-cristals. Nanoscale. 2019;11:16635–16649. doi: 10.1039/C9NR04970C. PubMed DOI

Khandhar A.P., Ferguson R.M., Krishnan K.M. Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems. J. Appl. Phys. 2011;109:7B310. doi: 10.1063/1.3556948. PubMed DOI PMC

Smolkova I.S., Kazantseva N.E., Babayan V., Vilcakova J., Pizurova N., Saha P. The Role of Diffusion-Controlled Growth in the Formation of Uniform Iron Oxide Nanoparticles with a Link to Magnetic Hyperthermia. Cryst. Growth Des. 2017;17:2323–2332. doi: 10.1021/acs.cgd.6b01104. DOI

Munoz-Menendez C., Conde-Leboran I., Baldomir D., Chubykalo-Fesenko O., Serantes D. Role of size polydispersity in magnetic fluid hyperthermia: Average vs. local infra/over-heating effects. Phys. Chem. Chem. Phys. 2015;17:27812–27820. doi: 10.1039/C5CP04539H. PubMed DOI

Ota S., Takemura Y. Characterization of Néel and Brownian Relaxations Isolated from Complex Dynamics Influenced by Dipole Interactions in Magnetic Nanoparticles. J. Phys. Chem. C. 2019;123:28859–28866. doi: 10.1021/acs.jpcc.9b06790. DOI

Kötitz R., Weitschies W., Trahms L., Brewer W., Semmler W. Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles. J. Magn. Magn. Mater. 1999;194:62–68. doi: 10.1016/S0304-8853(98)00580-0. DOI

Dieckhoff J., Eberbeck D., Schilling M., Ludwig F. Magnetic-field dependence of Brownian and Néel relaxation times. J. Appl. Phys. 2016;119:043903. doi: 10.1063/1.4940724. DOI

Hergt R., Hiergeist R., Hilger I., Kaiser W.A., Lapatnikov Y., Margel S., Richter U. Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J. Magn. Magn. Mat. 2004;270:345–357. doi: 10.1016/j.jmmm.2003.09.001. DOI

Bishop K.J.M., Wilmer C.E., Soh S., Grzybowski B.A. Nanoscale forces and their uses in self-assembly. Small. 2009;5:1600–1630. doi: 10.1002/smll.200900358. PubMed DOI

Lalatonne Y., Richardi J., Pileni M.P. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nat. Mater. 2004;3:121–125. doi: 10.1038/nmat1054. PubMed DOI

Serantes D., Baldomir D. Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance. Nanomaterials. 2021;11:2786. doi: 10.3390/nano11112786. PubMed DOI PMC

Held G.A., Grinstein G., Doyle H., Sun S.H., Murray C.B. Competing interactions in dispersions of superparamagnetic nanoparticles. Phys. Rev. B. 2001;64:124081–124084. doi: 10.1103/PhysRevB.64.012408. DOI

Scholten P.C., Tjaden D.L.A. Mutual attraction of superparamagnetic particles. J. Colloid. Interf. Sci. 1980;73:254–255. doi: 10.1016/0021-9797(80)90144-7. DOI

Barman A., Mondal S., Sahoo S., De A. Magnetization dynamics of nanoscale magnetic materials: A perspective. J. Appl. Phys. 2020;128:170901. doi: 10.1063/5.0023993. DOI

Mørup S., Hansen M.F., Frandsen C. Magnetic Nanoparticles. In: David L., Andrews G.D., Scholes G.P., editors. Comprehensive Nanoscience and Technology. 2nd ed. Academic Press; Cambridge, MA, USA: 2011. pp. 437–491.

Schaller V., Wahnström G., Sanz-Velasco A., Enoksson P., Johansson C. Monte Carlo simulation of magnetic multi-core nanoparticles. J. Magn. Magn. Mater. 2009;321:1400–1403. doi: 10.1016/j.jmmm.2009.02.047. DOI

Smolková I.S., Kazantseva N.E., Babayan V., Smolka P., Parmar H., Vilčáková J., Schneeweiss O., Pizurová N. Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium. J. Magn. Magn. Mater. 2015;374:508–515. doi: 10.1016/j.jmmm.2014.08.096. DOI

Smolková I.S., Kazantseva N.E., Vitková L., Babayan V., Vilčáková J., Smolka P. Size dependent heating efficiency of multicore iron oxide particles in low-power alternating magnetic fields. Acta Phys. Pol. A. 2017;131:663–665. doi: 10.12693/APhysPolA.131.663. DOI

Bender F., Fock J., Frandsen C., Hansen F.M., Balceris C., Ludwig F., Posth O., Wetterskog E., Bogart L.K., Southern P., et al. Relating magnetic properties and high hyperthermia performance of iron oxide nanoflowers. J. Phys. Chem. C. 2018;122:3068–3077. doi: 10.1021/acs.jpcc.7b11255. DOI

Dutz S. Are magnetic nanoparticles promising candidates for biomedical applications? IEEE Trans. Magn. 2016;52:0200103. doi: 10.1109/TMAG.2016.2570745. DOI

Ovejero J.G., Cabrera D., Carrey J., Valdivielso T., Salas G., Teran F.J. Effects of inter- and intra-aggregate magnetic dipolar interactions on the magnetic heating efficiency of iron oxide nanoparticles. Phys. Chem. Chem. Phys. 2016;18:10954–10963. doi: 10.1039/C6CP00468G. PubMed DOI

Landi G.T. Role of dipolar interaction in magnetic hyperthermia. Phys. Rev. B. 2014;89:011403. doi: 10.1103/PhysRevB.89.014403. DOI

Coral D.F., Zelis P.M., Marciello M., Morales M.D., Craievich A.A., Sanchez F.H., Van Raap M.B.F. Effect of nanoclustering and dipolar interactions in heat generation for magnetic hyperthermia. Langmuir. 2016;32:1201–1213. doi: 10.1021/acs.langmuir.5b03559. PubMed DOI

Ivanov A.O., Kantorovich S.S., Elfimova E.A., Zverev V.S., Sindt J.O., Camp P.J. The influence of interparticle correlations and self-assembly on the dynamic initial magnetic susceptibility spectra of ferrofluids. J. Magn. Magn. Mater. 2017;431:141–144. doi: 10.1016/j.jmmm.2016.09.119. DOI

Branquinho L.C., Carriao M.S., Costa A.S., Zufelato N., Sousa M.H., Miotto R., Ivkov R., Bakuzis A.F. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia. Sci. Rep. 2013;3:2887. doi: 10.1038/srep02887. PubMed DOI PMC

Usov N.A., Serebryakova O.N., Tarasov V.P. Interaction effects in assembly of magnetic nanoparticles. Nanoscale Res. Lett. 2017;12:489–497. doi: 10.1186/s11671-017-2263-x. PubMed DOI PMC

Usov N.A., Nesmeyanov M.S., Tarasov V.P. Magnetic vortices as efficient nano heaters in magnetic nanoparticle hyperthermia. Sci. Rep. 2018;8:1224–1233. doi: 10.1038/s41598-017-18162-8. PubMed DOI PMC

Pourmiri S., Tzitzios V., Hadjipanayis G.C., Meneses Brassea B.P., El-Gendyet A.A. Magnetic properties and hyperthermia behavior of iron oxide nanoparticle clusters. AIP Adv. 2019;9:125033–125038. doi: 10.1063/1.5130425. DOI

Jonasson C.H., Schaller V., Zeng L., Olsson E., Frandsen C., Castro A., Nilsson L., Bogart L.K., Southern P., Pankhurst Q.A., et al. Modelling the effect of different core sizes and magnetic interactions inside magnetic nanoparticles on hyperthermia performance. J. Magn. Magn. Mater. 2019;477:198–202. doi: 10.1016/j.jmmm.2018.09.117. DOI

Lee J.H., Jang J.T., Choi J.S., Moon S.H., Noh S.H., Kim J.W., Kim J.G., Kim I.S., Park K.I., Cheon J. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 2011;6:418–422. doi: 10.1038/nnano.2011.95. PubMed DOI

López-Ortega A., Estrader M., Salazar-Alvarez G., Roca A.G., Nogués J. Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys. Rep. 2015;553:1–32. doi: 10.1016/j.physrep.2014.09.007. DOI

Phan M.-H., Alonso A., Khurshid H., Lampen-Kelley P., Chandra S., Repa K.S., Nemati Z., Das R., Iglesias Ó., Srikanthet H. Exchange bias effects in iron oxide-based nanoparticle systems. Nanomaterials. 2016;6:221. doi: 10.3390/nano6110221. PubMed DOI PMC

Balaev D.A., Semenova S.V., Dubrovskiia A.A., Krasikova A.A., Popkova S.I., Yakushkinb S.S., Kirillovb V.L., Mart’yanov O.N. Synthesis and magnetic properties of the core–shell Fe3O4/CoFe2O4 nanoparticles. Phys. Solid State. 2020;62:285–290. doi: 10.1134/S1063783420020043. DOI

Rösch J., Keller F.S., Kaufman J.A. The birth, early years, and future of interventional radiology. J. Vasc. Interv. Radiol. 2003;14:841–853. doi: 10.1097/01.RVI.0000083840.97061.5b. PubMed DOI

Muller A., Rouvière O. Renal artery embolization-indications, technical approaches and outcomes. Nat. Rev. Nephrol. 2015;11:288–301. doi: 10.1038/nrneph.2014.231. PubMed DOI

Le Renard P.E., Buchegger F., Petri-Fink A., Hofmann H., Doelker E., Jordan O. Formulations for local, magnetically mediated hyperthermia treatment of solid tumors, and Dendritic nanostructures grown in hierarchical branched pores. In: Bartul Z., Trenor J., editors. Advances in Nanotechnology. 1st ed. Volume 12. Nova Science Publishes Inc.; New York, NY, USA: 2014. pp. 1–93, 123–155.

Poursaid A., Jensen M.M., Huoc E., Ghandehari H. Polymeric materials for embolic and chemoembolic applications. J. Control. Release. 2016;240:414–433. doi: 10.1016/j.jconrel.2016.02.033. PubMed DOI PMC

Xu R., Yu H., Zhang M., Chen Z., Wang W., Teng G., Ma J., Sun X., Gu N. Three-dimensional model for determining inhomogenepus thermal dosage in a liver tumor during arterial embolization hyperthermia incorporating magnetic nanoparticles. IEEE Trans. Magn. 2009;45:3085–3091.

Sun H., Xu L., Fan T., Zhan H., Wang H., Zhou Y., Yang R.-J. Targeted hyperthermia after selective embolization with ferromagnetic nanoparticles in a VX2 rabbit liver tumor model. Int. J. Nanomed. 2013;8:3795–3804. doi: 10.2147/IJN.S50373. PubMed DOI PMC

Idee J.M., Guiu B. Use of Lipiodol as a drug delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: A review. Crit. Rev. Oncol. Hemat. 2013;88:530–549. doi: 10.1016/j.critrevonc.2013.07.003. PubMed DOI

Cruise G.M., Constant M.J., Keely E.M., Greene R., Harris C. Polymeric Treatment Composition. WO 2014062696 A1. 2014 April 24;

Kwabena Kan-Dapaah K., Rahbar N., Soboyejo W. Implantable magnetic nanocomposites for the localized treatment of breast cancer. J. Appl. Phys. 2014;116:233505. doi: 10.1063/1.4903736. DOI

Moroz P., Pardoe H., Jones S.K., St Pierre T.G., Song S., Gray N.B. Arterial embolization hyperthermia: Hepatic iron particle distribution and its potential determination by magnetic resonance imaging. Phys. Med. Biol. 2002;47:1591–1602. doi: 10.1088/0031-9155/47/9/312. PubMed DOI

Margolis J.M. Elastomeric Materials and Processes. In: Harper C.A., editor. Handbook of Plastics, Elastomers and Composites. 3rd ed. Oxford University Press; New York, NY, USA: 1996. p. 844. Chapter 3.

Smolkova I.S., Kazantseva N.E., Parmar H., Babayan V., Smolka P., Saha P. Correlation between coprecipitation reaction course and magneto-structural properties of iron oxide nanoparticles. Mater. Chem. Phys. 2015;155:178–190. doi: 10.1016/j.matchemphys.2015.02.022. DOI

Kavanagh G.M., Ross-Murphy S.B. Rheological characterization of polymer gels. Prog. Polym. Sci. 1998;23:533–562. doi: 10.1016/S0079-6700(97)00047-6. DOI

Shen W., Zhang J. Modeling and numerical simulation of bioheat transfer and biomechanics in soft tissue. Math. Comput. Model. 2005;41:1251–1265. doi: 10.1016/j.mcm.2004.09.006. DOI

Treshalina H.M., Yakunina M.N., Makovetskay K.N., Stangevskiy A.A. Dynamics of tumor growth under the action of the new nano-ferrimagnetic nanoembosil with transarterial introduction. Vopr. Onkol. 2020;66:578–582.

Treshalina H.M., Zhukova O.S., Gerasimova G.K. Guidelines for preclinical study of the antitumour activity of drugs. In: Mironov A.N., Bunatyan N.D., editors. Manual for Conducting Preclinical Studies of Drugs. Grif and K; Moscow, Russia: 2012. pp. 640–654. Chapter 39.

Thomas C., Polin L., Lo Russo P., Valeriote F., Panchapor C., Pugh S. In vivo methods for screening and preclinical testing. In: Teicher B.A., Andrews P.A., editors. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval. Humana Press; Totowa, NJ, USA: 2004. pp. 99–123. Chapter 6.

Nair A.B., Jacob S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016;7:27–31. doi: 10.4103/0976-0105.177703. PubMed DOI PMC

Xia H., Li F., Hu X., Park W., Wang S., Jang Y., Du Y., Baik S., Cho S., Kang T., et al. pH-sensitive Pt nanoclusters assembly overcomes cisplatin resistance and heterogeneous stemness of hepatocellular carcinoma. ACS Cent. Sci. 2016;2:802–811. doi: 10.1021/acscentsci.6b00197. PubMed DOI PMC

Goldman A. Mordent Ferrite Technology. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2006.

Mirković M., Radović M., Stanković D., Milanović Z., Janković D., Matović M., Jeremić M., Antić B., Vranješ-Đurić S. 99mTc–Bisphosphonate–Coated magnetic nanoparticles as potential theranostic nanoagent. Mat. Sci. Eng. C. 2019;102:123–133. doi: 10.1016/j.msec.2019.04.034. PubMed DOI

Abu-Bakr A.F., Iskakova L.Y., Zubarev A.Y. Heat exchange within the surrounding biological tissue during magnetic hyperthermia. Math. Model. Eng. Probl. 2020;7:196–200. doi: 10.18280/mmep.070204. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...