Magnetic Nanomaterials for Arterial Embolization and Hyperthermia of Parenchymal Organs Tumors: A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
(8X20041]
MULTILATERAL SCIENTIFIC AND TECHNOLOGICAL COOPERATION IN THE DANUBE REGION
PubMed
34947751
PubMed Central
PMC8706233
DOI
10.3390/nano11123402
PII: nano11123402
Knihovny.cz E-zdroje
- Klíčová slova
- animal model, arterial embolization hyperthermia, clinical application (results), embolic agents, magnetic hyperthermia, magnetic nanoparticles,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Magnetic hyperthermia (MH), proposed by R. K. Gilchrist in the middle of the last century as local hyperthermia, has nowadays become a recognized method for minimally invasive treatment of oncological diseases in combination with chemotherapy (ChT) and radiotherapy (RT). One type of MH is arterial embolization hyperthermia (AEH), intended for the presurgical treatment of primary inoperable and metastasized solid tumors of parenchymal organs. This method is based on hyperthermia after transcatheter arterial embolization of the tumor's vascular system with a mixture of magnetic particles and embolic agents. An important advantage of AEH lies in the double effect of embolotherapy, which blocks blood flow in the tumor, and MH, which eradicates cancer cells. Consequently, only the tumor undergoes thermal destruction. This review introduces the progress in the development of polymeric magnetic materials for application in AEH.
Zobrazit více v PubMed
Sung H., Ferlay J., Siegel R.L., Laversanne M. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Myerson R.J., Moros E.G., Diederich C.J., Haemmerich D., Hurwitz M.D., Hsu I.J., McGough R.J., Nau W.H., Straube W.L., Turner P.F., et al. Components of a hyperthermia clinic: Recommendations for staffing, equipment, and treatment monitoring. Int. J. Hyperth. 2014;30:1–5. doi: 10.3109/02656736.2013.861520. PubMed DOI
Datta N.R., Ordonez S.G., Gaipl U.S., Paulides M.M., Crezee H., Gellermann J., Marder D., Puric E., Bodis S. Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and promises for the future. Cancer Treat. Rev. 2015;41:742–753. doi: 10.1016/j.ctrv.2015.05.009. PubMed DOI
Kroesen M., Mulder H.T., van Holthe J.M.L., Aangeenbrug A.A., Mens J.W.M., van Doorn H.C., Paulides M.M., Oomen-de Hoop E., Vernhout R.M., Lutgens L.C., et al. Confirmation of thermal dose as a predictor of local control in cervical carcinoma patients treated with state-of-the-art radiation therapy and hyperthermia. Radiother. Oncol. 2019;140:150–158. doi: 10.1016/j.radonc.2019.06.021. PubMed DOI
Van der Zee J. Heating the patient: A promising approach? Ann. Oncol. 2002;13:1173–1184. doi: 10.1093/annonc/mdf280. PubMed DOI
Van der Zee J., Vujaskovic Z., Kondo M., Sugahara T. Part I. Clinical hyperthermia. The Kadota Fund International Forum 2004—Clinical group consensus. Int. J. Hyperth. 2008;24:111–122. doi: 10.1080/02656730801895058. PubMed DOI PMC
Vorst A.V., Rosen A., Kotsuka Y. RF/Microwave Interaction with Biological Tissues. 1st ed. John Wiley &Sons, Inc.; Hoboken, NJ, USA: 2006. pp. 1–330.
Kok H.P., Cressman E.N.K., Ceelen W., Brace C.L., Ivkov R., Grüll H., Ter Haar G., Wust P., Crezee J. Heating technology for malignant tumors: A review. Int. J. Hyperth. 2020;37:711–741. doi: 10.1080/02656736.2020.1779357. PubMed DOI PMC
Dobšíček Trefná H., Crezee H., Schmidt M., Marder D., Lamprecht U., Ehmann M., Hartmann J., Nadobny J., Gellermann J., Van Holthe N., et al. Quality assurance guidelines for superficial hyperthermia clinical trials: I. Clinical requirements. Int. J. Hyperth. 2017;33:471–482. doi: 10.1080/02656736.2016.1277791. PubMed DOI
Cihoric N., Tsikkinis A., Van Rhoon G., Crezee H., Aebersold D.M., Bodis S., Beck M., Nadobny J., Budach V., Wust P., et al. Hyperthermia-related clinical trials on cancer treatment within the Clinical Trials.gov registry. Int. J. Hyperth. 2015;31:609–614. doi: 10.3109/02656736.2015.1040471. PubMed DOI
Van der Zee J., Van Rhoon G.C. Hyperthermia with radiotherapy and with system therapies. In: Veronesi U., editor. Brest Cancer. Springer; Berlin/Heidelberg, Germany: 2017. pp. 855–862.
Lassche G., Crezee J., Van Herpen C.M.L. Whole-body hyperthermia in combination with systemic therapy in advanced solid malignancies. Crit. Rev. Oncol. Hemat. 2019;139:67–74. doi: 10.1016/j.critrevonc.2019.04.023. PubMed DOI
Lee H., Park H.J., Park C.-S., Oh E.-T., Choi B.-H., Brent W., Le C.K., Song C.W. Response of Breast Cancer Cells and Cancer Stem Cells to Metformin and Hyperthermia Alone or Combined. PLoS ONE. 2014;2:e87979. doi: 10.1371/journal.pone.0087979. PubMed DOI PMC
Song C.W., Park H.J., Lee C.K., Griffin R. Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int. J. Hyperth. 2005;21:761–767. doi: 10.1080/02656730500204487. PubMed DOI
Goéré D., Glehen O., Quenet F., Guilloit J.-M., Bereder J.-M., Lorimier G., Thibaudeau E., Ghouti L., Pinto A., Tuech J.-J., et al. Second-look surgery plus hyperthermic intraperitoneal chemotherapy versus surveillance in patients at high risk of developing colorectal peritoneal metastases (Prophylochip–Prodige 15): A randomised, phase 3 study. Lancet Oncol. 2020;21:1147–1154. doi: 10.1016/S1470-2045(20)30322-3. PubMed DOI
Liang Z., Yang D., Cheng W., Cui G. Clinical study on microwave deep hyperthermia combined with hepatic artery embolisation and portal vein perfusion in the treatment of advanced liver cancer. Acta Med. Mediterr. 2020;36:465–469.
Shabunin A.V., Tavobilov M.M., Grekov D.N., Drozdov P.A. Combined modality treatment for patients with inoperable colorecral liver metastases. Sib. J. Oncol. 2018;17:34–40. doi: 10.21294/1814-4861-2018-17-3-34-40. DOI
Oei A.L., Kok H.P., Oei S.B., Horsman M.R., Stalpers L.J.A., Franken N.A.P., Crezee J. Molecular and biological rationale of hyperthermia as radio- and chemosensitizer. Adv. Drug Deliv. Rev. 2020;163:84–97. doi: 10.1016/j.addr.2020.01.003. PubMed DOI
Dobrodeev A.Y., Tuzikov S.A., Zavyalov A.A., Startseva Z.A. Impact of preoperative thermochemoradiotherapy on surgical outcomes in patients with non-small cell lung cancer. Vopr. Onkol. 2020;66:143–147.
Bakker A., van der Zee J., van Tienhoven G., Kok H.P., Rasch C.R.N., Crezee H. Temperature and thermal dose during radiotherapy and hyperthermia for recurrent breast cancer are related to clinical outcome and thermaltoxicity: A systematic review. Int. J. Hyperth. 2019;36:1023–1038. doi: 10.1080/02656736.2019.1665718. PubMed DOI
Westermann A., Mella O., van der Zee J. Long term survival data of triple modality treatment of stage IIB-III-IVA cervical cancer with combination of radiotherapy, chemotherapy and hyperthermia—An update. Int. J. Hyperth. 2012;28:549–553. doi: 10.3109/02656736.2012.673047. PubMed DOI
Dobšíček Trefná H., Schmidt M., van Rhoon G.C., Kok H.P., Gordeyev S.S., Lamprecht U., Marder D., Nadobny J., Ghadjar P., Abdel-Rahman S., et al. Quality assurance guidelines for interstitial hyperthermia. Int. J. Hyperth. 2019;36:277–294. doi: 10.1080/02656736.2018.1564155. PubMed DOI
Hildebrandt B., Wust P., Ahlers O., Dieing A., Sreenivasa G., Kerner T., Felix R., Riess H. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hemat. 2002;43:33–56. doi: 10.1016/S1040-8428(01)00179-2. PubMed DOI
Roti Roti J.L. Cellular responses to hyperthermia (40–46 C): Cell killing and molecular events. Int. J. Hyperth. 2008;24:3–15. doi: 10.1080/02656730701769841. PubMed DOI
Van den Tempel N., Horsman M.R., Kanaar R. Improving efficacy of hyperthermia in oncology by exploiting biological mechanisms. Int. J. Hyperth. 2016;32:446–454. doi: 10.3109/02656736.2016.1157216. PubMed DOI
Takahashi A. Molecular damage: Hyperthermia alone. In: Kokura S., Toshikazu Y., Takeo O., editors. Hyperthermic Oncology from Bench to Bedside. 1st ed. Springer; Singapore: 2016. pp. 19–32.
Elming P.B., Sørensen B.S., Oei A.L., Frnken N.A.P., Crezee J., Overgaard J., Horsman M.R. Hyperthermia: The optimal treatment to overcome radiation resistant hypoxia. Cancers. 2019;11:60. doi: 10.3390/cancers11010060. PubMed DOI PMC
Dobšíček T.H., Crezee J., Schmidt M., Marder D., Lamprecht U., Ehmann M., Nadobny J., Hartmann J., Lomax N. Quality assurance guidelines for superficial hyperthermia clinical trials. Strahlenther. Onkol. 2017;193:351–366. doi: 10.1007/s00066-017-1106-0. PubMed DOI PMC
Gilchrist R.K., Medal R., Shorey W.D., Hanselman R.C., Parrott J.C., Taylor C.B. Selective inductive heating of lymph nodes. Ann. Surg. 1957;146:596–606. doi: 10.1097/00000658-195710000-00007. PubMed DOI PMC
Johannsen M., Gneveckow U., Eckelt L., Feussner A., Waldofner N., Scholz R., Deger S., Wust P., Loening S.A., Jordan A. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int. J. Hyperth. 2005;21:637–647. doi: 10.1080/02656730500158360. PubMed DOI
Southern P., Pankhurst Q. Commentary on the clinical and preclinical dosage limits of interstitially administered magnetic fluids for therapeutic hyperthermia based on current practice and efficacy models. Int. J. Hyperth. 2017;34:671–686. doi: 10.1080/02656736.2017.1365953. PubMed DOI
Maier-Hauff K., Ulrich F., Nestler D., Niehoff H., Wust P., Thiesen B., Orawa H., Budach V., Jordan A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neuro-Oncol. 2011;103:317–324. doi: 10.1007/s11060-010-0389-0. PubMed DOI PMC
Kobayashi T., Kakimi K., Nakayama E., Jimbow K. Antitumor immunity by magnetic nanoparticle-mediated hyperthermia. Nanomedicine. 2014;9:1715–1726. doi: 10.2217/nnm.14.106. PubMed DOI
Petryk A.A., Giustini A.J., Gottesman R.E., Kaufman P.A., Hoopes P.J. Magnetic nanoparticle hyperthermia enhancement of cisplatin chemotherapy cancer treatment. Int. J. Hyperth. 2013;29:845–851. doi: 10.3109/02656736.2013.825014. PubMed DOI PMC
Attaluri A., Kandala S.K., Wabler M., Zhou H., Cornejo C., Armour M., Hedayati M., Zhang Y., DeWeese T.L., Herman C., et al. Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer. Int. J. Hyperth. 2015;31:359–374. doi: 10.3109/02656736.2015.1005178. PubMed DOI PMC
Spirou S.V., Costa Lima S.A., Bouziotis P., Vranješ-Djuric S., Efthimiadou E.K., Laurenzana A., Barbosa A.I., Garcia-Alonso I., Jones C., Jankovic D., et al. Recommendations for in vitro and in vivo testing of magnetic nanoparticle hyperthermia combined with radiation therapy. Nanomaterials. 2018;8:306. doi: 10.3390/nano8050306. PubMed DOI PMC
Mahmoudi K., Bouras A., Bozec D., Ivkov R., Hadjipanayis C. Magnetic hyperthermia therapy for the treatment of glioblastoma: A review of the therapy’s history, efficacy and application in humans. Int. J. Hyperth. 2018;34:1316–1328. doi: 10.1080/02656736.2018.1430867. PubMed DOI PMC
Rodrigues H.F., Capistrano G., Bakuzis A.F. In vivo magnetic nanoparticle hyperthermia: A review on preclinical studies, low-field nano-heaters, noninvasive thermometry and computer simulations for treatment planning. Int. J. Hyperth. 2020;37:76–99. doi: 10.1080/02656736.2020.1800831. PubMed DOI
Brezovich I.A. Low frequency hyperthermia: Capacitive and ferromagnetic thermoseed methods. In: Paliwal B., Hetzel F.W., Dewhirst M.W., editors. Biological, Physical, and Clinical Aspects of Hyperthermia. Medical Physics Monograph 16. American Institute of Physics; College Park, MI, USA: 1988. pp. 82–111.
Hergt R., Dutz S. Magnetic particle hyperthermia—Biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 2007;311:187–192. doi: 10.1016/j.jmmm.2006.10.1156. DOI
Dutz S., Herg R. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumor therapy. Int. J. Hyperth. 2013;29:790–800. doi: 10.3109/02656736.2013.822993. PubMed DOI
Kozissnik B., Bohorquez A.C., Dobson J., Rinaldi C. Magnetic fluid hyperthermia: Advances, challenges, and opportunity. Int. J. Hyperth. 2013;29:706–714. doi: 10.3109/02656736.2013.837200. PubMed DOI
Dutz S., Clement J.H., Eberbeck D., Gelbrich T., Hergt R., Muller R., Wotschadlo J., Zeisberger M. Ferrofluids of magnetic multicore nanoparticles for biomedical applications. J. Magn. Magn. Mater. 2009;321:1501–1504. doi: 10.1016/j.jmmm.2009.02.073. DOI
Dutz S., Herg R. Magnetic particle hyperthermia—A promising tumour therapy? Nanotechnology. 2014;25:452001. doi: 10.1088/0957-4484/25/45/452001. PubMed DOI
Andreu I., Natividad E. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. Int. J. Hyperth. 2013;29:739–775. doi: 10.3109/02656736.2013.826825. PubMed DOI
Garaio E., Collantes J.M., Plazaola F., Garsia J.A., Castellanos-Rubio I.A. Multifrequency eletromagnetic applicator with an integrated AC magnetometer for magnetic hyperthermia experiments. Meas. Sci. Technol. 2014;25:115702. doi: 10.1088/0957-0233/25/11/115702. DOI
Coffey W.T., Kalmykov Y.P. Thermal fluctuations of magnetic nanoparticles: Fifty years after Brown. J. Appl. Phys. 2010;112:121301. doi: 10.1063/1.4754272. DOI
Endelmann U.M., Shasha C., Teeman E., Slabu I., Krishnan K.M. Predicting size-dependent heating efficiency of magnetic nanoparticles from experi-ment and stochastic Néel-Brown Langevin simulation. J. Magn. Magn. Mater. 2019;471:450–456. doi: 10.1016/j.jmmm.2018.09.041. DOI
Bordelon D.E., Cornejo C., Gruttner C., Westphal F., DeWeese T.L., Ivkov R. Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude magnetic fields. J. Appl. Phys. 2011;109:124904. doi: 10.1063/1.3597820. DOI
Raouf I., Khalid S., Khan A., Lee J., Kim H.S., Kim M.-H. A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges. J. Therm. Biol. 2020;91:102644. doi: 10.1016/j.jtherbio.2020.102644. PubMed DOI PMC
Suleman M., Riaz S., Jalil R. A mathematical modeling approach toward magnetic fluid hyperthermia of cancer and unfolding heating mechanism. J. Therm. Anal. Calorim. 2021;146:1193–1219. doi: 10.1007/s10973-020-10080-8. DOI
Wells J., Ortega D., Steinhoff U., Dutz S., Garaio E., Sandre O., Natividad E., Cruz M.M., Brero F., Southern P., et al. Challenges and recommendations for magnetic hyperthermia characterization measurments. Int. J. Hyperth. 2021;38:447–460. doi: 10.1080/02656736.2021.1892837. PubMed DOI
Kallumadil M., Tada M., Nakagawa T., Abe M., Southern P., Pankhurst Q.A. Suitability of commercial colloids for magnetic hyperthermia. J. Magn. Magn. Mater. 2009;321:1509–1513. doi: 10.1016/j.jmmm.2009.02.075. DOI
Hedayatnasab Z., Abnisa F., Daud W. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater. Des. 2017;123:174–196. doi: 10.1016/j.matdes.2017.03.036. DOI
Barry J.W., Bookstein J.J., Alksne J.F. Ferromagnetic embolization. Radiology. 1981;138:341–349. doi: 10.1148/radiology.138.2.7455113. PubMed DOI
Akuta K., Abe M., Kondo M., Yoshikawa T., Tanaka Y., Yoshida M., Miura T., Nakao N., Onoyama Y., Yamada T., et al. Combined effects of hepatic arterial embolization using degradable stach microspheres (DSM) in hyperthermia for liver cancer. Int. J. Hyperth. 1991;7:231–242. doi: 10.3109/02656739109004993. PubMed DOI
Mauer C.A., Renzulli P., Baer H.U., Mettler D., Uhlschmid G., Neuenschwander P., Suter U.W., Triller J., Zimmermann A. Hepatic artery embolization with a novel radiopaque polymer causes extended liver necrosis in pigs due to occlusion of the concomitant portal vein. J. Hepatol. 2000;32:261–268. doi: 10.1016/S0168-8278(00)80071-9. PubMed DOI
Moroz P., Jones S.K., Gray B.N. Status of hyperthermia in the treatment of advanced liver cancer. J. Surg. Oncol. 2001;77:259–269. doi: 10.1002/jso.1106. PubMed DOI
Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016;1:16014. doi: 10.1038/natrevmats.2016.14. DOI
Moroz P., Jones S.K., Gray B.N. Tumor response to arterial embolization hyperthermia and direct injection hyperthermia in a rabbit liver tumor model. J. Surg. Oncol. 2002;80:149–156. doi: 10.1002/jso.10118. PubMed DOI
Takamatsu S., Matsui O., Gabata T., Kobayashi S., Okuda M., Ougi T., Ikehata Y., Nagano I., Nagaeet H. Selective induction hyperthermia following transcatheter arterial embolization with a mixture of nano-sized magnetic particles (ferucarbotran) and embolic materials: Feasibility study in rabbits. Radiat. Med. 2008;26:179–187. doi: 10.1007/s11604-007-0212-9. PubMed DOI
Attaluri A., Seshadri M., Mirpour S., Wabler M., Marinho T., Furqan M., Zhou H., De Paoli S., Gruettner C., Gilson W., et al. Image-guided thermal therapy with dual-contrast magnetic nanoparticle formulation: A feasibility study. Int. J. Hyperth. 2016;32:543–557. doi: 10.3109/02656736.2016.1159737. PubMed DOI PMC
Gunvén P. Liver embolizations in oncology: A review. Part I. Arterial (chemo) embolizations. Med. Oncol. 2008;25:287–296. doi: 10.1007/s12032-007-0039-3. PubMed DOI
Renard P.E.L., Buchegger F., Petri-Fink A., Bosman F., Rufenacht D., Hofmann H., Doelker E., Jordan O. Local moderate magnetically induced hyperthermia using an implant formed in situ in a mouse tumor model. Int. J. Hyperth. 2009;25:229–239. doi: 10.1080/02656730802713557. PubMed DOI
Granov A.M., Karelin M.I., Granov D.A., Tarazov P.G., Makovetskaya K.N. Method for Treatment of Tumors of Parenchymatous Organs Tumors. 2065734. RU Patent. 1996 August 27;
Karelin M.I. Ph.D. Thesis. The Russian Scientific Centre of Radiology and Surgical Technologies; Moscow, Russia: 1998. Substantiation of X-ray Vascular Ferromagnetic Embolization and Local Hyperthermia in Stage IV Renal Cell Carcinoma. (In Russian)
Granov A.M., Davidov M.I. Interventional Radiology in Oncology—Ways of Development and Perspectives. LLC Publisher; Saint Petersburg, Russia: 2007. pp. 289–297. Tumors of Kidney: Ferromagnetic Embolization. Chapter 8. (In Russian)
Smolkova I.S., Kazantseva N.E., Makoveckaya K.N., Smolka P., Saha P., Granov A.M. Maghemite based silicone composite for arterial embolization hyperthermia. Mat. Sci. Eng. C-Mater. 2015;48:632–641. doi: 10.1016/j.msec.2014.12.046. PubMed DOI
Makoveckaya K.N., Nikolaev G.A., Granov A.M., Tarazov P.G., Kazantseva N.E., Smolkova I.S., Saha P., Treshalina E.M., Yakynina M.N., Choroshavina Y.A., et al. Composition for Embolization and Hyperthermia of Vascular Tumors. 26704464 (C1) RU Patent. 2018 October 23;
Soetaert F., Korangath P., Serantes D., Fiering S., Ivkov R. Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Adv. Drug Deliv. Rev. 2020;163–164:65–83. doi: 10.1016/j.addr.2020.06.025. PubMed DOI PMC
Maier-Hauff K., Rothe R., Scholz R., Gneveckow U., Wust P., Thiesen B., Feussner A., Von Deimling A., Waldoefner N., Felix R., et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme. J. Neuro-Oncol. 2007;81:53–60. doi: 10.1007/s11060-006-9195-0. PubMed DOI
Babo D., Robinson J.K., Islam J., Thurecht K.J., Corrie S.R. Nanoparticle-based medicine: A review of FDA-approved materials and clinical treals to date. Pharm. Res. 2016;33:2373–2387. doi: 10.1007/s11095-016-1958-5. PubMed DOI
Granov A.M., Muratov O.V., Frolov V.F. Problems in the local hyperthermia of inductively heated embolized tissues. Theor. Found. Chem. Eng. 2002;36:63–66. doi: 10.1023/A:1013901625389. DOI
Zhao L.Y., Liu J.Y., Ouang W.W., Li-Dan-Ye L.L., Tang J.T. Magnetic mediated hyperthermia for cancer treatment: Research progress and clinical trials. Chin. Phys. B. 2013;22:108104. doi: 10.1088/1674-1056/22/10/108104. DOI
Li D., Wang K., Wang X., Li L., Zhao L., Tang J. Magnetic Arterial Embolization Hyperthermia Mediated by Carbonyl Iron Powder for Liver Carcinoma; Proceedings of the World Congress on Medical Physics and Biomedical Engineering; Beijing, China. 26–31 May 2012.
Chikazumi S., Graham C.D. Physics of Ferromagnetism. 2nd ed. Oxford University Press; Oxford, UK: 1999. Part VI Domainstructures; pp. 387–464.
Goodenough J.B. Summary of losses in magnetic materials. IEEE Trans. Magn. 2002;38:3398–3408. doi: 10.1109/TMAG.2002.802741. DOI
Spaldin N.A. Magnetic Materials: Fundamentals and Applications. Cambrige University Press; Cambridge, UK: 2011. pp. 3–270.
Dunlop D.J. The rock magnetism of fine particles. Phys. Earth Planet. Inter. 1981;26:1–26. doi: 10.1016/0031-9201(81)90093-5. DOI
Moskowitz B.M. Environmental Magnetism Workshop (IRM) Volume 279. University of Minnesota; Minneapolis, MN, USA: 1991. Hithhiker’s Guide to Magnetism; pp. 1–48.
Roberts A.P., Almeida T.P., Church N.S., Harrison R.J., Heslop D., Li Y., Li J., Muxworthy A.R., Williams W., Zhao X. Resolving the origin of pseudo-single domain magnetic behavior. J. Geophys. Res.-Sol. Earth. 2017;122:9534–9558. doi: 10.1002/2017JB014860. DOI
Gatel C.H., Bonilla F.J., Meffre A., Snoeck E., Warot-Fonrose B., Chaudret B., Lacroix L.M., Blon T. Size-Specific Spin Configurations in Single Iron Nanomagnet: From Flower to Exotic Vortices. Nano Lett. 2015;15:6952–6957. doi: 10.1021/acs.nanolett.5b02892. PubMed DOI
Coey J.M.D. Magnetism and Magnetic Materials. 1st ed. Cambridge University Press; Cambridge, UK: 2010. Ferromagnetism and exchange; pp. 128–174.
Krishnan K.M. Biomedical Nanomagnetics: A Spin through Possibilities in Imaging, Diagnostics, and Therapy. IEEE Trans. Magn. 2010;46:2523–2558. doi: 10.1109/TMAG.2010.2046907. PubMed DOI PMC
Dennis C.L., Ivkov R. Physics of heat generation using magnetic nanoparticles for hyperthermia. Int. J. Hyperth. 2013;29:715–729. doi: 10.3109/02656736.2013.836758. PubMed DOI
Mohapatra J., Xing M., Beatty J., Elkins J., Seda T., Mishra S.R., Liu J.P. Enhancing the magnetic and inductive heating properties of Fe3O4 nanoparticles via morphology control. Nanotechnology. 2020;31:275706. doi: 10.1088/1361-6528/ab84a3. PubMed DOI
Nemati Z., Alonso J., Rodrigo I., Das R., Garaio E., García J.A., Orue I., Phan M.H., Srikanth H. Improving the heating efficiency of iron oxide nanoparticles by turning their shape and size. Phys. Chem. C. 2018;122:2367–2381. doi: 10.1021/acs.jpcc.7b10528. DOI
Das R., Alonso J., Porshokouh Z.N., Kalappattil V., Torres D., Phan M.-H., Garaio E., García J.A., Sanchez Llamazares J.L., Srikanth H. Tunable High Aspect Ratio Iron Oxide Nanorods for Enhanced Hyperthermia. Phys. Chem. C. 2016;120:10086–10093. doi: 10.1021/acs.jpcc.6b02006. DOI
Niraula G., Coaquira J.A.H., Zoppellaro G., Goya G.F., Sharma S.K. Engineering shape anisotropy of Fe3O4-Fe2O3 hollow nanoparticles for magnetic hyperthermia. ACS Appl. Nano Mat. 2021;4:3148–3158. doi: 10.1021/acsanm.1c00311. DOI
Gonzales-Weimuller M., Zeisberger M., Krishnan K.M. Size-dependent heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J. Magn. Magn. Mater. 2009;321:1947–1950. doi: 10.1016/j.jmmm.2008.12.017. PubMed DOI PMC
Castellanos-Rubio I., Rodrigo I., Munshi R., Oihane Arriortua J.S., Garitaonandia A.M.-A., Plazaola F., Iñaki O., Pralle A., Insausti M. Outstanding heat loss via nano-octahedra above 20 nm in size: From wustite-rich nanoparticles to magnetite single-cristals. Nanoscale. 2019;11:16635–16649. doi: 10.1039/C9NR04970C. PubMed DOI
Khandhar A.P., Ferguson R.M., Krishnan K.M. Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems. J. Appl. Phys. 2011;109:7B310. doi: 10.1063/1.3556948. PubMed DOI PMC
Smolkova I.S., Kazantseva N.E., Babayan V., Vilcakova J., Pizurova N., Saha P. The Role of Diffusion-Controlled Growth in the Formation of Uniform Iron Oxide Nanoparticles with a Link to Magnetic Hyperthermia. Cryst. Growth Des. 2017;17:2323–2332. doi: 10.1021/acs.cgd.6b01104. DOI
Munoz-Menendez C., Conde-Leboran I., Baldomir D., Chubykalo-Fesenko O., Serantes D. Role of size polydispersity in magnetic fluid hyperthermia: Average vs. local infra/over-heating effects. Phys. Chem. Chem. Phys. 2015;17:27812–27820. doi: 10.1039/C5CP04539H. PubMed DOI
Ota S., Takemura Y. Characterization of Néel and Brownian Relaxations Isolated from Complex Dynamics Influenced by Dipole Interactions in Magnetic Nanoparticles. J. Phys. Chem. C. 2019;123:28859–28866. doi: 10.1021/acs.jpcc.9b06790. DOI
Kötitz R., Weitschies W., Trahms L., Brewer W., Semmler W. Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles. J. Magn. Magn. Mater. 1999;194:62–68. doi: 10.1016/S0304-8853(98)00580-0. DOI
Dieckhoff J., Eberbeck D., Schilling M., Ludwig F. Magnetic-field dependence of Brownian and Néel relaxation times. J. Appl. Phys. 2016;119:043903. doi: 10.1063/1.4940724. DOI
Hergt R., Hiergeist R., Hilger I., Kaiser W.A., Lapatnikov Y., Margel S., Richter U. Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J. Magn. Magn. Mat. 2004;270:345–357. doi: 10.1016/j.jmmm.2003.09.001. DOI
Bishop K.J.M., Wilmer C.E., Soh S., Grzybowski B.A. Nanoscale forces and their uses in self-assembly. Small. 2009;5:1600–1630. doi: 10.1002/smll.200900358. PubMed DOI
Lalatonne Y., Richardi J., Pileni M.P. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nat. Mater. 2004;3:121–125. doi: 10.1038/nmat1054. PubMed DOI
Serantes D., Baldomir D. Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance. Nanomaterials. 2021;11:2786. doi: 10.3390/nano11112786. PubMed DOI PMC
Held G.A., Grinstein G., Doyle H., Sun S.H., Murray C.B. Competing interactions in dispersions of superparamagnetic nanoparticles. Phys. Rev. B. 2001;64:124081–124084. doi: 10.1103/PhysRevB.64.012408. DOI
Scholten P.C., Tjaden D.L.A. Mutual attraction of superparamagnetic particles. J. Colloid. Interf. Sci. 1980;73:254–255. doi: 10.1016/0021-9797(80)90144-7. DOI
Barman A., Mondal S., Sahoo S., De A. Magnetization dynamics of nanoscale magnetic materials: A perspective. J. Appl. Phys. 2020;128:170901. doi: 10.1063/5.0023993. DOI
Mørup S., Hansen M.F., Frandsen C. Magnetic Nanoparticles. In: David L., Andrews G.D., Scholes G.P., editors. Comprehensive Nanoscience and Technology. 2nd ed. Academic Press; Cambridge, MA, USA: 2011. pp. 437–491.
Schaller V., Wahnström G., Sanz-Velasco A., Enoksson P., Johansson C. Monte Carlo simulation of magnetic multi-core nanoparticles. J. Magn. Magn. Mater. 2009;321:1400–1403. doi: 10.1016/j.jmmm.2009.02.047. DOI
Smolková I.S., Kazantseva N.E., Babayan V., Smolka P., Parmar H., Vilčáková J., Schneeweiss O., Pizurová N. Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium. J. Magn. Magn. Mater. 2015;374:508–515. doi: 10.1016/j.jmmm.2014.08.096. DOI
Smolková I.S., Kazantseva N.E., Vitková L., Babayan V., Vilčáková J., Smolka P. Size dependent heating efficiency of multicore iron oxide particles in low-power alternating magnetic fields. Acta Phys. Pol. A. 2017;131:663–665. doi: 10.12693/APhysPolA.131.663. DOI
Bender F., Fock J., Frandsen C., Hansen F.M., Balceris C., Ludwig F., Posth O., Wetterskog E., Bogart L.K., Southern P., et al. Relating magnetic properties and high hyperthermia performance of iron oxide nanoflowers. J. Phys. Chem. C. 2018;122:3068–3077. doi: 10.1021/acs.jpcc.7b11255. DOI
Dutz S. Are magnetic nanoparticles promising candidates for biomedical applications? IEEE Trans. Magn. 2016;52:0200103. doi: 10.1109/TMAG.2016.2570745. DOI
Ovejero J.G., Cabrera D., Carrey J., Valdivielso T., Salas G., Teran F.J. Effects of inter- and intra-aggregate magnetic dipolar interactions on the magnetic heating efficiency of iron oxide nanoparticles. Phys. Chem. Chem. Phys. 2016;18:10954–10963. doi: 10.1039/C6CP00468G. PubMed DOI
Landi G.T. Role of dipolar interaction in magnetic hyperthermia. Phys. Rev. B. 2014;89:011403. doi: 10.1103/PhysRevB.89.014403. DOI
Coral D.F., Zelis P.M., Marciello M., Morales M.D., Craievich A.A., Sanchez F.H., Van Raap M.B.F. Effect of nanoclustering and dipolar interactions in heat generation for magnetic hyperthermia. Langmuir. 2016;32:1201–1213. doi: 10.1021/acs.langmuir.5b03559. PubMed DOI
Ivanov A.O., Kantorovich S.S., Elfimova E.A., Zverev V.S., Sindt J.O., Camp P.J. The influence of interparticle correlations and self-assembly on the dynamic initial magnetic susceptibility spectra of ferrofluids. J. Magn. Magn. Mater. 2017;431:141–144. doi: 10.1016/j.jmmm.2016.09.119. DOI
Branquinho L.C., Carriao M.S., Costa A.S., Zufelato N., Sousa M.H., Miotto R., Ivkov R., Bakuzis A.F. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia. Sci. Rep. 2013;3:2887. doi: 10.1038/srep02887. PubMed DOI PMC
Usov N.A., Serebryakova O.N., Tarasov V.P. Interaction effects in assembly of magnetic nanoparticles. Nanoscale Res. Lett. 2017;12:489–497. doi: 10.1186/s11671-017-2263-x. PubMed DOI PMC
Usov N.A., Nesmeyanov M.S., Tarasov V.P. Magnetic vortices as efficient nano heaters in magnetic nanoparticle hyperthermia. Sci. Rep. 2018;8:1224–1233. doi: 10.1038/s41598-017-18162-8. PubMed DOI PMC
Pourmiri S., Tzitzios V., Hadjipanayis G.C., Meneses Brassea B.P., El-Gendyet A.A. Magnetic properties and hyperthermia behavior of iron oxide nanoparticle clusters. AIP Adv. 2019;9:125033–125038. doi: 10.1063/1.5130425. DOI
Jonasson C.H., Schaller V., Zeng L., Olsson E., Frandsen C., Castro A., Nilsson L., Bogart L.K., Southern P., Pankhurst Q.A., et al. Modelling the effect of different core sizes and magnetic interactions inside magnetic nanoparticles on hyperthermia performance. J. Magn. Magn. Mater. 2019;477:198–202. doi: 10.1016/j.jmmm.2018.09.117. DOI
Lee J.H., Jang J.T., Choi J.S., Moon S.H., Noh S.H., Kim J.W., Kim J.G., Kim I.S., Park K.I., Cheon J. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 2011;6:418–422. doi: 10.1038/nnano.2011.95. PubMed DOI
López-Ortega A., Estrader M., Salazar-Alvarez G., Roca A.G., Nogués J. Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys. Rep. 2015;553:1–32. doi: 10.1016/j.physrep.2014.09.007. DOI
Phan M.-H., Alonso A., Khurshid H., Lampen-Kelley P., Chandra S., Repa K.S., Nemati Z., Das R., Iglesias Ó., Srikanthet H. Exchange bias effects in iron oxide-based nanoparticle systems. Nanomaterials. 2016;6:221. doi: 10.3390/nano6110221. PubMed DOI PMC
Balaev D.A., Semenova S.V., Dubrovskiia A.A., Krasikova A.A., Popkova S.I., Yakushkinb S.S., Kirillovb V.L., Mart’yanov O.N. Synthesis and magnetic properties of the core–shell Fe3O4/CoFe2O4 nanoparticles. Phys. Solid State. 2020;62:285–290. doi: 10.1134/S1063783420020043. DOI
Rösch J., Keller F.S., Kaufman J.A. The birth, early years, and future of interventional radiology. J. Vasc. Interv. Radiol. 2003;14:841–853. doi: 10.1097/01.RVI.0000083840.97061.5b. PubMed DOI
Muller A., Rouvière O. Renal artery embolization-indications, technical approaches and outcomes. Nat. Rev. Nephrol. 2015;11:288–301. doi: 10.1038/nrneph.2014.231. PubMed DOI
Le Renard P.E., Buchegger F., Petri-Fink A., Hofmann H., Doelker E., Jordan O. Formulations for local, magnetically mediated hyperthermia treatment of solid tumors, and Dendritic nanostructures grown in hierarchical branched pores. In: Bartul Z., Trenor J., editors. Advances in Nanotechnology. 1st ed. Volume 12. Nova Science Publishes Inc.; New York, NY, USA: 2014. pp. 1–93, 123–155.
Poursaid A., Jensen M.M., Huoc E., Ghandehari H. Polymeric materials for embolic and chemoembolic applications. J. Control. Release. 2016;240:414–433. doi: 10.1016/j.jconrel.2016.02.033. PubMed DOI PMC
Xu R., Yu H., Zhang M., Chen Z., Wang W., Teng G., Ma J., Sun X., Gu N. Three-dimensional model for determining inhomogenepus thermal dosage in a liver tumor during arterial embolization hyperthermia incorporating magnetic nanoparticles. IEEE Trans. Magn. 2009;45:3085–3091.
Sun H., Xu L., Fan T., Zhan H., Wang H., Zhou Y., Yang R.-J. Targeted hyperthermia after selective embolization with ferromagnetic nanoparticles in a VX2 rabbit liver tumor model. Int. J. Nanomed. 2013;8:3795–3804. doi: 10.2147/IJN.S50373. PubMed DOI PMC
Idee J.M., Guiu B. Use of Lipiodol as a drug delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: A review. Crit. Rev. Oncol. Hemat. 2013;88:530–549. doi: 10.1016/j.critrevonc.2013.07.003. PubMed DOI
Cruise G.M., Constant M.J., Keely E.M., Greene R., Harris C. Polymeric Treatment Composition. WO 2014062696 A1. 2014 April 24;
Kwabena Kan-Dapaah K., Rahbar N., Soboyejo W. Implantable magnetic nanocomposites for the localized treatment of breast cancer. J. Appl. Phys. 2014;116:233505. doi: 10.1063/1.4903736. DOI
Moroz P., Pardoe H., Jones S.K., St Pierre T.G., Song S., Gray N.B. Arterial embolization hyperthermia: Hepatic iron particle distribution and its potential determination by magnetic resonance imaging. Phys. Med. Biol. 2002;47:1591–1602. doi: 10.1088/0031-9155/47/9/312. PubMed DOI
Margolis J.M. Elastomeric Materials and Processes. In: Harper C.A., editor. Handbook of Plastics, Elastomers and Composites. 3rd ed. Oxford University Press; New York, NY, USA: 1996. p. 844. Chapter 3.
Smolkova I.S., Kazantseva N.E., Parmar H., Babayan V., Smolka P., Saha P. Correlation between coprecipitation reaction course and magneto-structural properties of iron oxide nanoparticles. Mater. Chem. Phys. 2015;155:178–190. doi: 10.1016/j.matchemphys.2015.02.022. DOI
Kavanagh G.M., Ross-Murphy S.B. Rheological characterization of polymer gels. Prog. Polym. Sci. 1998;23:533–562. doi: 10.1016/S0079-6700(97)00047-6. DOI
Shen W., Zhang J. Modeling and numerical simulation of bioheat transfer and biomechanics in soft tissue. Math. Comput. Model. 2005;41:1251–1265. doi: 10.1016/j.mcm.2004.09.006. DOI
Treshalina H.M., Yakunina M.N., Makovetskay K.N., Stangevskiy A.A. Dynamics of tumor growth under the action of the new nano-ferrimagnetic nanoembosil with transarterial introduction. Vopr. Onkol. 2020;66:578–582.
Treshalina H.M., Zhukova O.S., Gerasimova G.K. Guidelines for preclinical study of the antitumour activity of drugs. In: Mironov A.N., Bunatyan N.D., editors. Manual for Conducting Preclinical Studies of Drugs. Grif and K; Moscow, Russia: 2012. pp. 640–654. Chapter 39.
Thomas C., Polin L., Lo Russo P., Valeriote F., Panchapor C., Pugh S. In vivo methods for screening and preclinical testing. In: Teicher B.A., Andrews P.A., editors. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval. Humana Press; Totowa, NJ, USA: 2004. pp. 99–123. Chapter 6.
Nair A.B., Jacob S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016;7:27–31. doi: 10.4103/0976-0105.177703. PubMed DOI PMC
Xia H., Li F., Hu X., Park W., Wang S., Jang Y., Du Y., Baik S., Cho S., Kang T., et al. pH-sensitive Pt nanoclusters assembly overcomes cisplatin resistance and heterogeneous stemness of hepatocellular carcinoma. ACS Cent. Sci. 2016;2:802–811. doi: 10.1021/acscentsci.6b00197. PubMed DOI PMC
Goldman A. Mordent Ferrite Technology. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2006.
Mirković M., Radović M., Stanković D., Milanović Z., Janković D., Matović M., Jeremić M., Antić B., Vranješ-Đurić S. 99mTc–Bisphosphonate–Coated magnetic nanoparticles as potential theranostic nanoagent. Mat. Sci. Eng. C. 2019;102:123–133. doi: 10.1016/j.msec.2019.04.034. PubMed DOI
Abu-Bakr A.F., Iskakova L.Y., Zubarev A.Y. Heat exchange within the surrounding biological tissue during magnetic hyperthermia. Math. Model. Eng. Probl. 2020;7:196–200. doi: 10.18280/mmep.070204. DOI