DNA Repair Gene Polymorphisms and Chromosomal Aberrations in Exposed Populations

. 2021 ; 12 () : 691947. [epub] 20210616

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34220964

DNA damage and unrepaired or insufficiently repaired DNA double-strand breaks as well as telomere shortening contribute to the formation of structural chromosomal aberrations (CAs). Non-specific CAs have been used in the monitoring of individuals exposed to potential carcinogenic chemicals and radiation. The frequency of CAs in peripheral blood lymphocytes (PBLs) has been associated with cancer risk and the association has also been found in incident cancer patients. CAs include chromosome-type aberrations (CSAs) and chromatid-type aberrations (CTAs) and their sum CAtot. In the present study, we used data from our published genome-wide association studies (GWASs) and extracted the results for 153 DNA repair genes for 607 persons who had occupational exposure to diverse harmful substances/radiation and/or personal exposure to tobacco smoking. The analyses were conducted using linear and logistic regression models to study the association of DNA repair gene polymorphisms with CAs. Considering an arbitrary cutoff level of 5 × 10-3, 14 loci passed the threshold, and included 7 repair pathways for CTA, 4 for CSA, and 3 for CAtot; 10 SNPs were eQTLs influencing the expression of the target repair gene. For the base excision repair pathway, the implicated genes PARP1 and PARP2 encode poly(ADP-ribosyl) transferases with multiple regulatory functions. PARP1 and PARP2 have an important role in maintaining genome stability through diverse mechanisms. Other candidate genes with known roles for CSAs included GTF2H (general transcription factor IIH subunits 4 and 5), Fanconi anemia pathway genes, and PMS2, a mismatch repair gene. The present results suggest pathways with mechanistic rationale for the formation of CAs and emphasize the need to further develop techniques for measuring individual sensitivity to genotoxic exposure.

Zobrazit více v PubMed

1000 Genomes Project Consortium, Auton A., Abecasis G. R., Altshuler D. M., Durbin R. M., Abecasis G. R., et al. (2015). A global reference for human genetic variation. Nature 526:68. 10.1038/nature15393 PubMed DOI PMC

Albertini R. J., Anderson D., Douglas G. R., Hagmar L., Hemminki K., Merlo F., et al. (2000). IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. International Programme on Chemical Safety. Mutat. Res. 463 111–172. 10.1016/s1383-5742(00)00049-1 PubMed DOI

Azarm K., Smith S. (2020). Nuclear PARPs and genome integrity. Genes Dev. 34 285–301. 10.1101/gad.334730.119 PubMed DOI PMC

Bignold L. P. (2009). Mechanisms of clastogen-induced chromosomal aberrations: a critical review and description of a model based on failures of tethering of DNA strand ends to strand-breaking enzymes. Mutat. Res. 681 271–298. 10.1016/j.mrrev.2008.11.004 PubMed DOI

Boussios S., Abson C., Moschetta M., Rassy E., Karathanasi A., Bhat T., et al. (2020). Poly (ADP-Ribose) polymerase inhibitors: Talazoparib in ovarian cancer and beyond. Drugs R D 20 55–73. PubMed PMC

Boyle A. P., Hong E. L., Hariharan M., Cheng Y., Schaub M. A., Kasowski M., et al. (2012). Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22 1790–1797. 10.1101/gr.137323.112 PubMed DOI PMC

Burrell R. A., McClelland S. E., Endesfelder D., Groth P., Weller M. C., Shaikh N., et al. (2013). Replication stress links structural and numerical cancer chromosomal instability. Nature 494 492–496. 10.1038/nature11935 PubMed DOI PMC

Chan S. H., Ngeow J. (2017). Germline mutation contribution to chromosomal instability. Endocr. Relat. Cancer 24 T33–T46. PubMed

Delaneau O., Marchini J., Zagury J. F. (2011). A linear complexity phasing method for thousands of genomes. Nat. Methods 9 179–181. 10.1038/nmeth.1785 PubMed DOI

Durante M., Bedford J. S., Chen D. J., Conrad S., Cornforth M. N., Natarajan A. T., et al. (2013). From DNA damage to chromosome aberrations: joining the break. Mutat. Res. 756 5–13. 10.1016/j.mrgentox.2013.05.014 PubMed DOI

Dusinska M., Barancokova M., Kazimirova A., Harrington V., Volkovova K., Staruchova M., et al. (2004a). Does occupational exposure to mineral fibres cause DNA or chromosome damage? Mutat. Res. 553 103–110. 10.1016/j.mrfmmm.2004.06.029 PubMed DOI

Dusinska M., Collins A., Kazimirova A., Barancokova M., Harrington V., Volkovova K., et al. (2004b). Genotoxic effects of asbestos in humans. Mutat. Res. 553 91–102. 10.1016/j.mrfmmm.2004.06.027 PubMed DOI

Dusinska M., Staruchova M., Horska A., Smolkova B., Collins A., Bonassi S., et al. (2012). Are glutathione S transferases involved in DNA damage signalling? interactions with DNA damage and repair revealed from molecular epidemiology studies. Mutat. Res. 736 130–137. 10.1016/j.mrfmmm.2012.03.003 PubMed DOI

Friedberg E. C., Walker G. C., Siede W., Wood R. D., Schultz R. A., Ellenberger T. (2006). DNA Repair and Mutagenesis, Second Edn. Washington, DC: American Society for Microbiology Press. 273–.

Futreal P. A., Coin L., Marshall M., Down T., Hubbard T., Wooster R., et al. (2004). A census of human cancer genes. Nat. Rev. Cancer 4 177–183. PubMed PMC

Gostissa M., Alt F. W., Chiarle R. (2011). Mechanisms that promote and suppress chromosomal translocations in lymphocytes. Annu. Rev. Immunol. 29 319–350. PubMed

GTEx Consortium. (2013). The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45 580–585. PubMed PMC

Hagmar L., Stromberg U., Tinnerberg H., Mikoczy Z. (2004). Epidemiological evaluation of cytogenetic biomarkers as potential surrogate end-points for cancer. IARC Sci. Publ. 157 207–215. PubMed

Hemminki K., Rachakonda S., Musak L., Vymetalkova V., Halasova E., Forsti A., et al. (2015). Telomere length in circulating lymphocytes: association with chromosomal aberrations. Genes Chromosomes Cancer 54 194–196. PubMed

Hill C. R., Theos A. (2019). What’s new in genetic skin diseases. Dermatol. Clin. 37 229–239. PubMed

Howie B., Marchini J., Stephens M. (2011). Genotype imputation with thousands of genomes. G3 (Bethesda) 1 457–470. PubMed PMC

Jones C. H., Pepper C., Baird D. M. (2012). Telomere dysfunction and its role in haematological cancer. Br. J. Haematol. 156 573–587. PubMed

Jones M. J., Jallepalli P. V. (2012). Chromothripsis: chromosomes in crisis. Dev. Cell 23 908–917. PubMed PMC

Kazimirova A., Barancokova M., Dzupinkova Z., Wsolova L., Dusinska M. (2009). Micronuclei and chromosomal aberrations, important markers of ageing: possible association with XPC and XPD polymorphisms. Mutat. Res. 661 35–40. PubMed

Kolesnikova O., Radu L., Poterszman A. (2019). TFIIH: A multi-subunit complex at the cross-roads of transcription and DNA repair. Adv. Protein Chem. Struct. Biol. 115 21–67. PubMed

Kroupa M., Polivkova Z., Rachakonda S., Schneiderova M., Vodenkova S., Buchler T., et al. (2017). Bleomycin-induced chromosomal damage and shortening of telomeres in peripheral blood lymphocytes of incident cancer patients. Genes Chromosomes Cancer 57 61–69. PubMed

Lange S. S., Takata K., Wood R. D. (2011). DNA polymerases and cancer. Nat. Rev. Cancer 11 96–110. PubMed PMC

Li H., Hilmarsen H. T., Hossain M. B., Bjork J., Hansteen I. L., Albin M., et al. (2013). Telomere length and LINE1 methylation is associated with chromosomal aberrations in peripheral blood. Genes Chromosomes Cancer 52 1–10. PubMed

Maciejowski J., Li Y., Bosco N., Campbell P. J., de Lange T. (2015). Chromothripsis and Kataegis induced by telomere crisis. Cell 163 1641–1654. PubMed PMC

Maser R. S., DePinho R. A. (2002). Connecting chromosomes, crisis, and cancer. Science 297 565–569. PubMed

Meeker A. K., Hicks J. L., Iacobuzio-Donahue C. A., Montgomery E. A., Westra W. H., Chan T. Y., et al. (2004). Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. Clin. Cancer Res. 10 3317–3326. PubMed

Mitelman F., Johansson B., Mertens F. (2007). The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 7 233–245. PubMed

Musak L., Soucek P., Vodickova L., Naccarati A., Halasova E., Polakova V., et al. (2008). Chromosomal aberrations in tire plant workers and interaction with polymorphisms of biotransformation and DNA repair genes. Mutat. Res. 641 36–42. PubMed

Natarajan A. T., Palitti F. (2008). DNA repair and chromosomal alterations. Mutat. Res. 657 3–7. PubMed

Niazi Y., Thomsen H., Smolkova B., Vodickova L., Vodenkova S., Kroupa M., et al. (2018). Genetic variation associated with chromosomal aberration frequency: a genome-wide association study. Environ. Mol. Mutagen. 60 17–28. PubMed

Niazi Y., Thomsen H., Smolkova B., Vodickova L., Vodenkova S., Kroupa M., et al. (2019). Distinct pathways associated with chromosomal aberration frequency in a cohort exposed to genotoxic compounds compared to general population. Mutagenesis 34 323–330. PubMed

Pruim R. J., Welch R. P., Sanna S., Teslovich T. M., Chines P. S., Gliedt T. P., et al. (2010). LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26 2336–2337. PubMed PMC

Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M. A., Bender D., et al. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81 559–575. PubMed PMC

Rahman N. (2014). Realizing the promise of cancer predisposition genes. Nature 505 302–308. PubMed PMC

Rajagopalan H., Lengauer C. (2004). Aneuploidy and cancer. Nature 432 338–341. PubMed

Rimel J. K., Taatjes D. J. (2018). The essential and multifunctional TFIIH complex. Protein Sci. 27 1018–1037. PubMed PMC

Rosenbloom K. R., Armstrong J., Barber G. P., Casper J., Clawson H., Diekhans M., et al. (2015). The UCSC genome browser database: 2015 update. Nucleic Acids Res. 43 D670–D681. PubMed PMC

Rossner P., Boffetta P., Ceppi M., Bonassi S., Smerhovsky Z., Landa K., et al. (2005). Chromosomal aberrations in lymphocytes of healthy subjects and risk of cancer. Environ. Health Perspect. 113 517–520. PubMed PMC

Srinivas N., Rachakonda S., Kumar R. (2020). Telomeres and telomere length: a general overview. Cancers (Basel) 12:558. PubMed PMC

Sung P. (2018). Introduction to the thematic minireview series: DNA double-strand break repair and pathway choice. J. Biol. Chem. 293 10500–10501. PubMed PMC

Vodenkova S., Polivkova Z., Musak L., Smerhovsky Z., Zoubkova H., Sytarova S., et al. (2015). Structural chromosomal aberrations as potential risk markers in incident cancer patients. Mutagenesis 30 557–563. PubMed

Vodicka P., Kumar R., Stetina R., Musak L., Soucek P., Haufroid V., et al. (2004a). Markers of individual susceptibility and DNA repair rate in workers exposed to xenobiotics in a tire plant. Environ. Mol. Mutagen. 44 283–292. PubMed

Vodicka P., Musak L., Frank C., Kazimirova A., Vymetalkova V., Barancokova M., et al. (2015). Interactions of DNA repair gene variants modulate chromosomal aberrations in healthy subjects. Carcinogenesis 36 1299–1306. PubMed

Vodicka P., Musak L., Vodickova L., Vodenkova S., Catalano C., Kroupa M., et al. (2018). Genetic variation of acquired structural chromosomal aberrations. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 836(Pt A) 13–21. PubMed

Vodicka P., Polivkova Z., Sytarova S., Demova H., Kucerova M., Vodickova L., et al. (2010). Chromosomal damage in peripheral blood lymphocytes of newly diagnosed cancer patients and healthy controls. Carcinogenesis 31 1238–1241. PubMed

Vodicka P., Tuimala J., Stetina R., Kumar R., Manini P., Naccarati A., et al. (2004b). Cytogenetic markers, DNA single-strand breaks, urinary metabolites, and DNA repair rates in styrene-exposed lamination workers. Environ. Health Perspect. 112 867–871. PubMed PMC

Walter K., Min J. L., Huang J., Crooks L., Memari Y., McCarthy S., et al. (2015). The UK10K project identifies rare variants in health and disease. Nature 526 82–90. PubMed PMC

Ward L. D., Kellis M. (2012). HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40 D930–D934. PubMed PMC

Wood R. D., Mitchell M., Lindahl T. (2005). Human DNA repair genes, 2005. Mutat. Res. 577 275–283. PubMed

Wood R. D., Mitchell M., Sgouros J., Lindahl T. (2001). Human DNA repair genes. Science 291 1284–1289. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...