Cytogenetic markers, DNA single-strand breaks, urinary metabolites, and DNA repair rates in styrene-exposed lamination workers
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
15175174
PubMed Central
PMC1242014
DOI
10.1289/ehp.6849
Knihovny.cz E-zdroje
- MeSH
- chemický průmysl MeSH
- chromozomální aberace * MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikrojaderné testy MeSH
- oprava DNA * MeSH
- plastické hmoty MeSH
- poškození DNA * MeSH
- pracovní expozice * MeSH
- studie případů a kontrol MeSH
- styren otrava MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- plastické hmoty MeSH
- styren MeSH
The effect of occupational exposure to styrene on frequencies of chromosomal aberrations and binucleated cells with micronuclei and on single-strand break levels in peripheral blood lymphocytes was studied in 86 reinforced plastic workers and 42 control individuals (including 16 maintenance workers with intermittent, low-dose exposure). In these individuals, the irradiation-specific DNA repair rates and the repair rates of 8-oxoguanines were investigated. We assessed the exposure by measuring the concentrations of styrene in air and in blood and of mandelic acid, phenylglyoxylic acid, 4-vinyl phenol conjugates and regioisomeric phenyl hydroxyethyl mercapturic acids in urine. All these parameters correlated with one another. No clear relationship was found between the styrene exposure and the frequencies of chromosomal aberrations. Binucleated cells with micronuclei were moderately related to the parameters of styrene exposure. We found a negative correlation between all exposure parameters and single-strand breaks. The positive correlation between exposure parameters and DNA repair rates suggests that particular DNA repair pathways may be induced by styrene exposure.
Zobrazit více v PubMed
Mutat Res. 1999 Sep 30;445(2):205-24 PubMed
Mutat Res. 1999 Jul 16;428(1-2):255-69 PubMed
Int J Radiat Oncol Biol Phys. 2000 Jan 15;46(2):481-90 PubMed
Med Hypotheses. 2000 Apr;54(4):619-23 PubMed
Mutagenesis. 2001 Jul;16(4):297-301 PubMed
Int Arch Occup Environ Health. 2001 Jul;74(5):336-44 PubMed
J Occup Environ Med. 2001 Aug;43(8):694-700 PubMed
Chem Res Toxicol. 2001 Oct;14(10):1393-400 PubMed
Carcinogenesis. 2002 May;23(5):893-7 PubMed
Mutat Res. 2002 Jul;511(3):239-54 PubMed
Mutat Res. 2002 Jul 25;504(1-2):3-16 PubMed
Pharmacogenetics. 2002 Dec;12(9):691-702 PubMed
Rapid Commun Mass Spectrom. 2002;16(24):2239-48 PubMed
Int J Radiat Oncol Biol Phys. 2003 Apr 1;55(5):1216-25 PubMed
Toxicol Appl Pharmacol. 2003 Jun 15;189(3):160-9 PubMed
Cancer Detect Prev. 2003;27(4):275-84 PubMed
Toxicol Appl Pharmacol. 1981 Aug;60(1):85-90 PubMed
Carcinogenesis. 1982;3(6):681-5 PubMed
Radiat Res. 1984 Jun;98(3):479-90 PubMed
Mutat Res. 1986 Jan-Feb;159(1-2):109-16 PubMed
Int J Radiat Biol Relat Stud Phys Chem Med. 1986 Nov;50(5):893-908 PubMed
Radiat Environ Biophys. 1993;32(4):325-36 PubMed
IARC Sci Publ. 1993;(127):289-300 PubMed
Mutat Res. 1994 Oct-Dec;313(2-3):249-62 PubMed
Carcinogenesis. 1995 Jul;16(7):1473-81 PubMed
Arch Environ Contam Toxicol. 1995 Aug;29(2):270-4 PubMed
Environ Health Perspect. 1996 May;104 Suppl 3:465-9 PubMed
Am J Ind Med. 1997 May;31(5):636-44 PubMed
Mutat Res. 1998 Aug 3;404(1-2):155-65 PubMed
Int J Cancer. 1999 Sep 24;83(1):83-90 PubMed
Cytogenet Cell Genet. 1999;87(1-2):41-6 PubMed
DNA Repair Gene Polymorphisms and Chromosomal Aberrations in Exposed Populations
Application of the comet assay method in clinical studies