Azithromycin promotes proliferation, and inhibits inflammation in nasal epithelial cells in primary ciliary dyskinesia

. 2023 Sep 02 ; 13 (1) : 14453. [epub] 20230902

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37660113
Odkazy

PubMed 37660113
PubMed Central PMC10475097
DOI 10.1038/s41598-023-41577-5
PII: 10.1038/s41598-023-41577-5
Knihovny.cz E-zdroje

Primary ciliary dyskinesia (PCD) is a genetic disorder associated with recurrent and chronic respiratory infections due to functional defects of motile cilia. In this study, we aimed to elucidate inflammatory and proliferative responses in PCD respiratory epithelium and evaluate the effect of Azithromycin (AZT) on these responses. Airway basal cells (BCs) were isolated from nasal samples of Wild-type (WT) epitope of healthy donors and PCD donors with bi-allelic mutations in DNAH5, DNAH11 and CCDC39. Cells were expanded in vitro and stimulated with either Lipopolysaccharide (LPS) or vehicle control. Post stimulation, cells were treated with either Azithromycin (AZT) or vehicle control. Cell proliferation was imaged in real-time. Separately, BCs from the same donors were expanded and grown at an air-liquid interface (ALI) to generate a multi-ciliated epithelium (MCE). Once fully mature, cells were stimulated with LPS, AZT, LPS + AZT or vehicle control. Inflammatory profiling was performed on collected media by cytokine Luminex assay. At baseline, there was a significantly higher mean production of pro-inflammatory cytokines by CCDC39 BCs and MCEs when compared to WT, DNAH11 and DNAH5 cells. AZT inhibited production of cytokines induced by LPS in PCD cells. Differences in cell proliferation were noted in PCD and this was also corrected with AZT treatment.

Zobrazit více v PubMed

Bustamante-Marin XM, Ostrowski LE. Cilia and mucociliary clearance. Cold Spring Harb. Perspect. Biol. 2017;9:a028241. doi: 10.1101/cshperspect.a028241. PubMed DOI PMC

Wallmeier J, et al. Motile ciliopathies. Nat. Rev. Dis. Primers. 2020;6:77. doi: 10.1038/s41572-020-0209-6. PubMed DOI

Leigh MW, et al. Clinical features and associated likelihood of primary ciliary dyskinesia in children and adolescents. Ann. Am. Thorac. Soc. 2016;13:1305–1313. doi: 10.1513/AnnalsATS.201511-748OC. PubMed DOI PMC

Zariwala, M. A., Knowles, M. R., Leigh, M. W. Primary ciliary dyskinesia. In GeneReviews® (eds. Adam, M. P., et al.) (University of Washington, 1993).

Milla CE. The evolving spectrum of ciliopathies and respiratory disease. Curr. Opin. Pediatr. 2016;28:339–347. doi: 10.1097/MOP.0000000000000358. PubMed DOI PMC

Lucas JS, Davis SD, Omran H, Shoemark A. Primary ciliary dyskinesia in the genomics age. Lancet Respir. Med. 2020;8:202–216. doi: 10.1016/S2213-2600(19)30374-1. PubMed DOI

Lucas JS, et al. Pulmonary exacerbations in patients with primary ciliary dyskinesia: An expert consensus definition for use in clinical trials. ERJ Open Res. 2019;5:00147–02018. doi: 10.1183/23120541.00147-2018. PubMed DOI PMC

Davis SD, et al. Primary ciliary dyskinesia: Longitudinal study of lung disease by ultrastructure defect and genotype. Am. J. Respir. Crit. Care Med. 2019;199:190–198. doi: 10.1164/rccm.201803-0548OC. PubMed DOI PMC

Pifferi M, et al. Lung function longitudinal study by phenotype and genotype in primary ciliary dyskinesia. Chest. 2020;158:117–120. doi: 10.1016/j.chest.2020.02.001. PubMed DOI

Shoemark A, et al. Topological data analysis reveals genotype–phenotype relationships in primary ciliary dyskinesia. Eur. Respir. J. 2021;58:2002359. doi: 10.1183/13993003.02359-2020. PubMed DOI

Shapiro AJ, Genetic Disorders of Mucociliary Clearance Consortium et al. Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr. Pulmonol. 2016;51:115–132. doi: 10.1002/ppul.23304. PubMed DOI PMC

Kobbernagel HE, et al. Efficacy and safety of azithromycin maintenance therapy in primary ciliary dyskinesia (BESTCILIA): A multicentre, double-blind, randomised, placebo-controlled phase 3 trial. Lancet Respir. Med. 2020;8:493–505. doi: 10.1016/S2213-2600(20)30058-8. PubMed DOI

Ratjen F, et al. Changes in airway inflammation during pulmonary exacerbations in patients with cystic fibrosis and primary ciliary dyskinesia. Eur. Respir. J. 2016;47:829–836. doi: 10.1183/13993003.01390-2015. PubMed DOI

Bush A, et al. Mucus properties in children with primary ciliary dyskinesia: Comparison with cystic fibrosis. Chest. 2006;129:118–123. doi: 10.1378/chest.129.1.118. PubMed DOI

Sagel SD, et al. Airway inflammation in children with primary ciliary dyskinesia. Ann. Am. Thorac. Soc. 2023;20:67–74. doi: 10.1513/AnnalsATS.202204-314OC. PubMed DOI PMC

Cockx M, Gouwy M, Van Damme J, Struyf S. Chemoattractants and cytokines in primary ciliary dyskinesia and cystic fibrosis: Key players in chronic respiratory diseases. Cell Mol. Immunol. 2018;15:312–323. doi: 10.1038/cmi.2017.118. PubMed DOI PMC

Cockx M, et al. Neutrophils from patients with primary ciliary dyskinesia display reduced chemotaxis to CXCR2 ligands. Front. Immunol. 2017;8:1126. doi: 10.3389/fimmu.2017.01126. PubMed DOI PMC

Davis JD, Wypych TP. Cellular and functional heterogeneity of the airway epithelium. Mucosal. Immunol. 2021;14:978–990. doi: 10.1038/s41385-020-00370-7. PubMed DOI PMC

Vladar EK, Nayak JV, Milla CE, Axelrod JD. Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation. JCI Insight. 2016;1:e88027. doi: 10.1172/jci.insight.88027. PubMed DOI PMC

Vladar EK, et al. Notch signaling inactivation by small molecule γ-secretase inhibitors restores the multiciliated cell population in the airway epithelium. Am. J. Physiol. Lung Cell Mol. Physiol. 2023;324:L771–L782. doi: 10.1152/ajplung.00382.2022. PubMed DOI PMC

Wu C-T, et al. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell. 2023;186:112–130.e20. doi: 10.1016/j.cell.2022.11.030. PubMed DOI PMC

HIMC website. https://iti.stanford.edu/himc/protocols.html (accessed 26 Nov 2022).

Golan, A., Judge, G.G., Miller, D. Maximum Entropy Econometrics: Robust Estimation with Limited Data 2 (1996).

Koenker R. Quantile Regression. Cambridge University Press; 2005.

Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507. doi: 10.1093/biomet/93.3.491. DOI

Kim KI, van de Wiel MA. Effects of dependence in high-dimensional multiple testing problems. BMC Bioinform. 2008;9:114. doi: 10.1186/1471-2105-9-114. PubMed DOI PMC

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Amatngalim GD, et al. Basal cells contribute to innate immunity of the airway epithelium through production of the antimicrobial protein RNase 7. J. Immunol. 2015;194:3340–3350. doi: 10.4049/jimmunol.1402169. PubMed DOI

Hewitt RJ, Lloyd CM. Regulation of immune responses by the airway epithelial cell landscape. Nat. Rev. Immunol. 2021;21:347–362. doi: 10.1038/s41577-020-00477-9. PubMed DOI PMC

Hackett NR, et al. The human airway epithelial basal cell transcriptome. PLoS ONE. 2011;6:e18378. doi: 10.1371/journal.pone.0018378. PubMed DOI PMC

Alanin MC, et al. A longitudinal study of lung bacterial pathogens in patients with primary ciliary dyskinesia. Clin. Microbiol. Infect. 2015;21:1093.e1–7. doi: 10.1016/j.cmi.2015.08.020. PubMed DOI

Habibi MS, et al. Neutrophilic inflammation in the respiratory mucosa predisposes to RSV infection. Science. 2020;370:eaba9301. doi: 10.1126/science.aba9301. PubMed DOI PMC

Sawant KV, et al. Chemokine CXCL1-mediated neutrophil trafficking in the lung: Role of CXCR2 activation. J. Innate Immun. 2015;7:647–658. doi: 10.1159/000430914. PubMed DOI PMC

Di Paolo NC, Shayakhmetov DM. Interleukin 1α and the inflammatory process. Nat. Immunol. 2016;17:906–913. doi: 10.1038/ni.3503. PubMed DOI PMC

Ling K-M, et al. Azithromycin partially mitigates dysregulated repair of lung allograft small airway epithelium. Transplantation. 2020;104:1166–1176. doi: 10.1097/TP.0000000000003134. PubMed DOI

Slater M, et al. The differential effects of azithromycin on the airway epithelium in vitro and in vivo. Physiol. Rep. 2016;4:e12960. doi: 10.1814/phy2.12960. PubMed DOI PMC

Smith CM, et al. Ciliated cultures from patients with primary ciliary dyskinesia do not produce nitric oxide or inducible nitric oxide synthase during early infection. Chest. 2013;144:1671–1676. doi: 10.1378/chest.13-0159. PubMed DOI

Walker WT, et al. Ciliated cultures from patients with primary ciliary dyskinesia produce nitric oxide in response to Haemophilus influenzae infection and proinflammatory cytokines. Chest. 2014;145:668–669. doi: 10.1378/chest.13-2398. PubMed DOI

Bush A. Azithromycin is the answer in paediatric respiratory medicine, but what was the question? Paediatr. Respir. Rev. 2020;34:67–74. doi: 10.1016/j.prrv.2019.07.002. PubMed DOI

Ling K-M, et al. Azithromycin reduces airway inflammation induced by human rhinovirus in lung allograft recipients. Respirology. 2019;24:1212–1219. doi: 10.1111/resp.13550. PubMed DOI

Harrell CR, et al. The role of Interleukin 1 receptor antagonist in mesenchymal stem cell-based tissue repair and regeneration. BioFactors. 2020;46:263–275. doi: 10.1002/biof.1587. PubMed DOI

Halldorsson S, et al. Azithromycin maintains airway epithelial integrity during Pseudomonas aeruginosa infection. Am. J. Respir. Cell Mol. Biol. 2010;42:62–68. doi: 10.1165/rcmb.2008-0357OC. PubMed DOI

Ghosh B, et al. Strong correlation between air–liquid interface cultures and in vivo transcriptomics of nasal brush biopsy. Am. J. Physiol. Lung Cell Mol. Physiol. 2020;318:L1056–L1062. doi: 10.1152/ajplung.00050.2020. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...