An optimized comet-based in vitro DNA repair assay to assess base and nucleotide excision repair activity

. 2020 Dec ; 15 (12) : 3844-3878. [epub] 20201116

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid33199871
Odkazy

PubMed 33199871
DOI 10.1038/s41596-020-0401-x
PII: 10.1038/s41596-020-0401-x
Knihovny.cz E-zdroje

This optimized protocol (including links to instruction videos) describes a comet-based in vitro DNA repair assay that is relatively simple, versatile, and inexpensive, enabling the detection of base and nucleotide excision repair activity. Protein extracts from samples are incubated with agarose-embedded substrate nucleoids ('naked' supercoiled DNA) containing specifically induced DNA lesions (e.g., resulting from oxidation, UVC radiation or benzo[a]pyrene-diol epoxide treatment). DNA incisions produced during the incubation reaction are quantified as strand breaks after electrophoresis, reflecting the extract's incision activity. The method has been applied in cell culture model systems, human biomonitoring and clinical investigations, and animal studies, using isolated blood cells and various solid tissues. Once extracts and substrates are prepared, the assay can be completed within 2 d.

Zobrazit více v PubMed

Ostling, O. & Johanson, K. J. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun. 123, 291–298 (1984). PubMed

Cook, P. R., Brazell, I. A. & Jost, E. Characterization of nuclear structures containing superhelical DNA. J. Cell Sci. 22, 303–324 (1976). PubMed

Collins, A. R. & Azqueta, A. Single cell gel electrophoresis combined with lesion-specific enzymes to measure oxidative damage to DNA. in Laboratory Methods in Cell Biology, Vol. 112 (eds Anderson, C. T., Howell, E. S. & Dixit, R.) 69–92 (Elsevier, 2012).

Stefanini, M. et al. Novel Chinese hamster ultraviolet-sensitive mutants for excision repair form complementation groups 9 and 10. Cancer Res. 51, 3965–3971 (1991). PubMed

Lorenzo, Y. et al. The carotenoid beta-cryptoxanthin stimulates the repair of DNA oxidation damage in addition to acting as an antioxidant in human cells. Carcinogenesis 30, 308–314 (2009). PubMed

Collins, A. R., Fleming, I. M. & Gedik, C. M. In vitro repair of oxidative and ultraviolet-induced DNA damage in supercoiled nucleoid DNA by human cell extract. Biochim. Biophys. Acta 1219, 724–727 (1994). PubMed

Langie, S. A. et al. Development and validation of a modified comet assay to phenotypically assess nucleotide excision repair. Mutagenesis 21, 153–158 (2006). PubMed

Collins, A. R. et al. Inter-individual differences in repair of DNA base oxidation, measured in vitro with the comet assay. Mutagenesis 16, 297–301 (2001). PubMed

Møller, P. et al. Searching for assay controls for the Fpg- and hOGG1-modified comet assay. Mutagenesis 33, 9–19 (2018). PubMed

Borghini, A., Roursgaard, M., Andreassi, M. G., Kermanizadeh, A. & Moller, P. Repair activity of oxidatively damaged DNA and telomere length in human lung epithelial cells after exposure to multi-walled carbon nanotubes. Mutagenesis 32, 173–180 (2017). PubMed

Jensen, D. M. et al. Telomere length and genotoxicity in the lung of rats following intragastric exposure to food-grade titanium dioxide and vegetable carbon particles. Mutagenesis 34, 203–214 (2019). PubMed

Lohr, M. et al. Association between age and repair of oxidatively damaged DNA in human peripheral blood mononuclear cells. Mutagenesis 30, 695–700 (2015). PubMed

Gaivao, I., Piasek, A., Brevik, A., Shaposhnikov, S. & Collins, A. R. Comet assay-based methods for measuring DNA repair in vitro; estimates of inter- and intra-individual variation. Cell Biol. Toxicol. 25, 45–52 (2009). PubMed

Herrera, M. et al. Differences in repair of DNA cross-links between lymphocytes and epithelial tumor cells from colon cancer patients measured in vitro with the comet assay. Clin. Cancer Res. 15, 5466–5472 (2009). PubMed

van Dyk, E., Steenkamp, A., Koekemoer, G. & Pretorius, P. J. Hereditary tyrosinemia type 1 metabolites impair DNA excision repair pathways. Biochem. Biophys. Res. Commun. 401, 32–36 (2010). PubMed

Langie, S. A. et al. The effect of oxidative stress on nucleotide-excision repair in colon tissue of newborn piglets. Mutat. Res. 695, 75–80 (2010). PubMed

Mikkelsen, L. et al. Aging and defense against generation of 8-oxo-7,8-dihydro-2’-deoxyguanosine in DNA. Free Radic. Biol. Med. 47, 608–615 (2009). PubMed

Langie, S. A. et al. Measuring DNA repair incision activity of mouse tissue extracts towards singlet oxygen-induced DNA damage: a comet-based in vitro repair assay. Mutagenesis 26, 461–471 (2011). PubMed

Slyskova, J. et al. Functional, genetic, and epigenetic aspects of base and nucleotide excision repair in colorectal carcinomas. Clin. Cancer Res. 18, 5878–5887 (2012). PubMed

Azqueta, A., Slyskova, J., Langie, S. A., O’Neill Gaivao, I. & Collins, A. Comet assay to measure DNA repair: approach and applications. Front. Genet. 5, 288 (2014). PubMed PMC

Yauk, C., Lambert, I., Marchetti, F. & Douglas, G. AOP 15. Alkylation of DNA in male pre-meiotic germ cells leading to heritable mutations. AOPWiki https://aopwiki.org/aops/15

Pottenger, L. H., Schoeny, R., Moore, M. & Simon, T. W. AOP 46. AFB1: mutagenic mode-of-action leading to hepatocellular carcinoma (HCC). AOPWiki https://aopwiki.org/aops/46

Silva, J. P., Gomes, A. C. & Coutinho, O. P. Oxidative DNA damage protection and repair by polyphenolic compounds in PC12 cells. Eur. J. Pharmacol. 601, 50–60 (2008). PubMed

Ramos, A. A., Azqueta, A., Pereira-Wilson, C. & Collins, A. R. Polyphenolic compounds from Salvia species protect cellular DNA from oxidation and stimulate DNA repair in cultured human cells. J. Agric. Food Chem. 58, 7465–7471 (2010). PubMed

Ramos, A. A., Pereira-Wilson, C. & Collins, A. R. Protective effects of ursolic acid and luteolin against oxidative DNA damage include enhancement of DNA repair in Caco-2 cells. Mutat. Res. 692, 6–11 (2010). PubMed

Azqueta, A., Costa, S., Lorenzo, Y., Bastani, N. E. & Collins, A. R. Vitamin C in cultured human (HeLa) cells: lack of effect on DNA protection and repair. Nutrients 5, 1200–1217 (2013). PubMed PMC

Silva, J. P., Gomes, A. C., Proenca, F. & Coutinho, O. P. Novel nitrogen compounds enhance protection and repair of oxidative DNA damage in a neuronal cell model: comparison with quercetin. Chem. Biol. Interact. 181, 328–337 (2009). PubMed

Sliwinski, T. et al. STI571 reduces NER activity in BCR/ABL-expressing cells. Mutat. Res. 654, 162–167 (2008). PubMed

Folkmann, J. K. et al. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ. Health Perspect. 117, 703–708 (2009). PubMed

Langie, S. A. et al. Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring. FASEB J. 27, 3323–3334 (2013). PubMed

Langie, S. A. et al. Redox and epigenetic regulation of the APE1 gene in the hippocampus of piglets: the effect of early life exposures. DNA Repair (Amst.) 18, 52–62 (2014).

Langie, S. A. et al. The ageing brain: effects on DNA repair and DNA methylation in mice. Genes (Basel) 8, https://doi.org/10.3390/genes8020075 (2017).

Setayesh, T. et al. Impact of weight loss strategies on obesity-induced DNA damage. Mol. Nutr. Food Res. 63, e1900045 (2019). PubMed

Gaivao, I. & Sierra, L. M. Drosophila comet assay: insights, uses, and future perspectives. Front. Genet. 5, 304 (2014). PubMed PMC

Dusinska, M., Dzupinkova, Z., Wsolova, L., Harrington, V. & Collins, A. R. Possible involvement of XPA in repair of oxidative DNA damage deduced from analysis of damage, repair and genotype in a human population study. Mutagenesis 21, 205–211 (2006). PubMed

Slyskova, J. et al. Relationship between the capacity to repair 8-oxoguanine, biomarkers of genotoxicity and individual susceptibility in styrene-exposed workers. Mutat. Res. 634, 101–111 (2007). PubMed

Dusinska, M. et al. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies. Mutat. Res. 736, 130–137 (2012). PubMed

Staruchova, M. et al. Occupational exposure to mineral fibres. Biomarkers of oxidative damage and antioxidant defence and associations with DNA damage and repair. Mutagenesis 23, 249–260 (2008). PubMed

Azqueta, A. et al. DNA repair as a human biomonitoring tool: comet assay approaches. Mutat. Res. 781, 71–87 (2019). PubMed

Dusinska, M. et al. Genotoxic effects of asbestos in humans. Mutat. Res. 553, 91–102 (2004). PubMed

Dusinska, M. et al. Does occupational exposure to mineral fibres cause DNA or chromosome damage? Mutat. Res. 553, 103–110 (2004). PubMed

Vodicka, P. et al. Cytogenetic markers, DNA single-strand breaks, urinary metabolites, and DNA repair rates in styrene-exposed lamination workers. Environ. Health Perspect. 112, 867–871 (2004). PubMed PMC

Jensen, A. et al. Influence of the OGG1 Ser326Cys polymorphism on oxidatively damaged DNA and repair activity. Free Radic. Biol. Med. 52, 118–125 (2012). PubMed

Collins, A. R., Harrington, V., Drew, J. & Melvin, R. Nutritional modulation of DNA repair in a human intervention study. Carcinogenesis 24, 511–515 (2003). PubMed

Caple, F. et al. Inter-individual variation in DNA damage and base excision repair in young, healthy non-smokers: effects of dietary supplementation and genotype. Br. J. Nutr. 103, 1585–1593 (2010). PubMed

Stoyanova, E. et al. Base excision repair capacity in chronic renal failure patients undergoing hemodialysis treatment. Cell Biochem. Funct. 32, 177–182 (2014). PubMed

Fikrova, P. et al. DNA crosslinks, DNA damage and repair in peripheral blood lymphocytes of non-small cell lung cancer patients treated with platinum derivatives. Oncol. Rep. 31, 391–396 (2014). PubMed

Slyskova, J. et al. Differences in nucleotide excision repair capacity between newly diagnosed colorectal cancer patients and healthy controls. Mutagenesis 27, 225–232 (2012). PubMed

Slyskova, J. et al. Post-treatment recovery of suboptimal DNA repair capacity and gene expression levels in colorectal cancer patients. Mol. Carcinog. 54, 769–778 (2015). PubMed

Vodenkova, S. et al. Base excision repair capacity as a determinant of prognosis and therapy response in colon cancer patients. DNA Repair (Amst.) 72, 77–85 (2018).

Slyskova, J., Langie, S. A., Collins, A. R. & Vodicka, P. Functional evaluation of DNA repair in human biopsies and their relation to other cellular biomarkers. Front. Genet. 5, 116 (2014). PubMed PMC

Singh, N. P., McCoy, M. T., Tice, R. R. & Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184–191 (1988). PubMed

Collins, A. R., Ord, M. J. & Johnson, R. T. Correlations of DNA damage and repair with nuclear and chromosomal damage in HeLa cells caused by methylnitrosamides. Cancer Res. 41, 5176–5187 (1981). PubMed

Crebelli, R. et al. Biomonitoring of primary aluminium industry workers: detection of micronuclei and repairable DNA lesions by alkaline SCGE. Mutat. Res. 516, 63–70 (2002). PubMed

Vande Loock, K., Decordier, I., Ciardelli, R., Haumont, D. & Kirsch-Volders, M. An aphidicolin-block nucleotide excision repair assay measuring DNA incision and repair capacity. Mutagenesis 25, 25–32 (2010). PubMed

Figueroa-Gonzalez, G. & Perez-Plasencia, C. Strategies for the evaluation of DNA damage and repair mechanisms in cancer. Oncol. Lett. 13, 3982–3988 (2017). PubMed PMC

Lambert, B., Ringborg, U. & Skoog, L. Age-related decrease of ultraviolet light-induced DNA repair synthesis in human peripheral leukocytes. Cancer Res. 39, 2792–2795 (1979). PubMed

Athas, W. F., Hedayati, M. A., Matanoski, G. M., Farmer, E. R. & Grossman, L. Development and field-test validation of an assay for DNA repair in circulating human lymphocytes. Cancer Res. 51, 5786–5793 (1991). PubMed

Redaelli, A., Magrassi, R., Bonassi, S., Abbondandolo, A. & Frosina, G. AP endonuclease activity in humans: development of a simple assay and analysis of ten normal individuals. Teratog. Carcinog. Mutagen. 18, 17–26 (1998). PubMed

Elliott, R. M., Astley, S. B., Southon, S. & Archer, D. B. Measurement of cellular repair activities for oxidative DNA damage. Free Radic. Biol. Med. 28, 1438–1446 (2000). PubMed

Roldan-Arjona, T. et al. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc. Natl Acad. Sci. USA 94, 8016–8020 (1997). PubMed

Sauvaigo, S. et al. An oligonucleotide microarray for the monitoring of repair enzyme activity toward different DNA base damage. Anal. Biochem. 333, 182–192 (2004). PubMed

Paz-Elizur, T. et al. DNA repair activity for oxidative damage and risk of lung cancer. J. Natl Cancer Inst. 95, 1312–1319 (2003). PubMed

Paz-Elizur, T. et al. Reduced repair of the oxidative 8-oxoguanine DNA damage and risk of head and neck cancer. Cancer Res. 66, 11683–11689 (2006). PubMed

Paz-Elizur, T. et al. Development of an enzymatic DNA repair assay for molecular epidemiology studies: distribution of OGG activity in healthy individuals. DNA Repair (Amst.) 6, 45–60 (2007).

Leitner-Dagan, Y. et al. N-methylpurine DNA glycosylase and OGG1 DNA repair activities: opposite associations with lung cancer risk. J. Natl Cancer Inst. 104, 1765–1769 (2012). PubMed PMC

Leitner-Dagan, Y. et al. Enzymatic MPG DNA repair assays for two different oxidative DNA lesions reveal associations with increased lung cancer risk. Carcinogenesis 35, 2763–2770 (2014). PubMed PMC

Azqueta, A. & Collins, A. R. The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Arch. Toxicol. 87, 949–968 (2013). PubMed

Riso, P. et al. DNA damage and repair activity after broccoli intake in young healthy smokers. Mutagenesis 25, 595–602 (2010). PubMed

Danielsen, P. H. et al. Oxidatively damaged DNA and its repair after experimental exposure to wood smoke in healthy humans. Mutat. Res. 642, 37–42 (2008). PubMed

Collins, A. R. & Azqueta, A. DNA repair as a biomarker in human biomonitoring studies; further applications of the comet assay. Mutat. Res. 736, 122–129 (2012). PubMed

Guarnieri, S. et al. DNA repair phenotype and dietary antioxidant supplementation. Br. J. Nutr. 99, 1018–1024 (2008). PubMed

Gaivão, I., Rodríguez, R. & Sierra, L. M. Use of the comet assay to study DNA repair in Drosophila melanogaster. in Genotoxicity and DNA Repair: A Practical Approach (eds Sierra, L. M. & Gaivão, I.) Ch. 23 (Humana Press, 2014).

Gorniak, J. P. et al. Tissue differences in BER-related incision activity and non-specific nuclease activity as measured by the comet assay. Mutagenesis 28, 673–681 (2013). PubMed

Muruzabal, D., Langie, S. A. S., Pourrut, B. & Azqueta, A. The enzyme-modified comet assay: enzyme incubation step in 2 vs 12-gels/slide systems. Mutat. Res. 845, 402981 (2019). PubMed

Azqueta, A., Langie, S. & Collins, A. R. The effect of extract concentration and time of incubation in the comet based in vitro DNA repair assay. Abstracts of the 12th International Comet Assay Workshop held at the University of Navarra, Pamplona, Spain, 29–31 August 2017. Mutagenesis 32, e24 https://academic.oup.com/mutage/article/32/6/e1/4844756#121612377 (2018).

Boer, K., Isenmann, S. & Deufel, T. Strong interference of hemoglobin concentration on CSF total protein measurement using the trichloroacetic acid precipitation method. Clin. Chem. Lab. Med. 45, 112–113 (2007). PubMed

Roman, Y., Bomsel-Demontoy, M. C., Levrier, J., Chaste-Duvernoy, D. & Jalme, M. S. Effect of hemolysis on plasma protein levels and plasma electrophoresis in birds. J. Wildl. Dis. 45, 73–80 (2009). PubMed

Brodersen, R. Bilirubin. Solubility and interaction with albumin and phospholipid. J. Biol. Chem. 254, 2364–2369 (1979). PubMed

Kjellin, K. G. Bilirubin compounds in the CSF. J. Neurol. Sci. 13, 161–173 (1971). PubMed

Moller, P. et al. On the search for an intelligible comet assay descriptor. Front. Genet. 5, 217 (2014). PubMed PMC

Forchhammer, L. et al. Variation in assessment of oxidatively damaged DNA in mononuclear blood cells by the comet assay with visual scoring. Mutagenesis 23, 223–231 (2008). PubMed

Azqueta, A. et al. The influence of scoring method on variability in results obtained with the comet assay. Mutagenesis 26, 393–399 (2011). PubMed

Brunborg, G., Rolstadaas, L. & Gutzkow, K. B. Electrophoresis in the comet assay. in Electrophoresis: Life Sciences Practical Applications (eds Boldura, O-M. & Baltă, C.) 526–652 (IntechOpen, 2018).

Shaposhnikov, S. et al. Twelve-gel slide format optimised for comet assay and fluorescent in situ hybridisation. Toxicol. Lett. 195, 31–34 (2010). PubMed

Collins, A. R. et al. The comet assay: topical issues. Mutagenesis 23, 143–151 (2008). PubMed

Forchhammer, L. et al. Variation in the measurement of DNA damage by comet assay measured by the ECVAG inter-laboratory validation trial. Mutagenesis 25, 113–123 (2010). PubMed

Azqueta, A., Langie, S. A., Slyskova, J. & Collins, A. R. Measurement of DNA base and nucleotide excision repair activities in mammalian cells and tissues using the comet assay—a methodological overview. DNA Repair (Amst.) 12, 1007–1010 (2013).

Gungor, N. et al. Lung inflammation is associated with reduced pulmonary nucleotide excision repair in vivo. Mutagenesis 25, 77–82 (2010). PubMed

Azqueta, A. et al. A comparative performance test of standard, medium- and high-throughput comet assays. Toxicol. Vitr. 27, 768–773 (2013).

Brauner, E. V. et al. Exposure to ultrafine particles from ambient air and oxidative stress-induced DNA damage. Environ. Health Perspect. 115, 1177–1182 (2007). PubMed PMC

Moller, P. et al. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals. Environ. Mol. Mutagen. 56, 97–110 (2015). PubMed

Hasplova, K. et al. DNA alkylation lesions and their repair in human cells: modification of the comet assay with 3-methyladenine DNA glycosylase (AlkD). Toxicol. Lett. 208, 76–81 (2012). PubMed

Dusinska, M. et al. Testing strategies for the safety of nanoparticles used in medical applications. Nanomed. (Lond.) 4, 605–607 (2009).

Choi, S. W., Yeung, V. T., Collins, A. R. & Benzie, I. F. Redox-linked effects of green tea on DNA damage and repair, and influence of microsatellite polymorphism in HMOX-1: results of a human intervention trial. Mutagenesis 30, 129–137 (2015). PubMed

Brevik, A. et al. Supplementation of a Western diet with golden kiwifruits (Actinidia chinensis var.‘Hort 16A’): effects on biomarkers of oxidation damage and antioxidant protection. Nutr. J. 10, 54 (2011). PubMed PMC

Hanova, M. et al. Modulation of DNA repair capacity and mRNA expression levels of XRCC1, hOGG1 and XPC genes in styrene-exposed workers. Toxicol. Appl. Pharmacol. 248, 194–200 (2010). PubMed

Humphreys, V. et al. Age-related increases in DNA repair and antioxidant protection: a comparison of the Boyd Orr Cohort of elderly subjects with a younger population sample. Age Ageing 36, 521–526 (2007). PubMed

Langie, S. A. et al. Modulation of nucleotide excision repair in human lymphocytes by genetic and dietary factors. Br. J. Nutr. 103, 490–501 (2010). PubMed

Al-Serori, H. et al. Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells. PLoS One 13, e0193677 (2018). PubMed PMC

Soares, J. P. et al. Effects of combined physical exercise training on DNA damage and repair capacity: role of oxidative stress changes. Age (Dordr.) 37, 9799 (2015).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Measuring DNA modifications with the comet assay: a compendium of protocols

. 2023 Mar ; 18 (3) : 929-989. [epub] 20230127

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...