Functional evaluation of DNA repair in human biopsies and their relation to other cellular biomarkers

. 2014 ; 5 () : 116. [epub] 20140523

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid24904630

Thousands of DNA lesions are estimated to occur in each cell every day and almost all are recognized and repaired. DNA repair is an essential system that prevents accumulation of mutations which can lead to serious cellular malfunctions. Phenotypic evaluation of DNA repair activity of individuals is a relatively new approach. Methods to assess base and nucleotide excision repair pathways (BER and NER) in peripheral blood cells based on modified comet assay protocols have been widely applied in human epidemiological studies. These provided some interesting observations of individual DNA repair activity being suppressed among cancer patients. However, extension of these results to cancer target tissues requires a different approach. Here we describe the evaluation of BER and NER activities in extracts from deep-frozen colon biopsies using an upgraded version of the in vitro comet-based DNA repair assay in which 12 reactions on one microscope slide can be performed. The aim of this report is to provide a detailed, easy-to-follow protocol together with results of optimization experiments. Additionally, results obtained by functional assays were analyzed in the context of other cellular biomarkers, namely single nucleotide polymorphisms and gene expressions. We have shown that measuring DNA repair activity is not easily replaceable by genomic or transcriptomic approaches, but should be applied with the latter techniques in a complementary manner. The ability to measure DNA repair directly in cancer target tissues might finally answer questions about the tissue-specificity of DNA repair processes and their real involvement in the process of carcinogenesis.

Zobrazit více v PubMed

Azqueta A., Gutzkow K. B., Priestley C. C., Meier S., Walker J. S., Brunborg G., et al. (2012). A comparative performance test of standard, medium- and high-throughput comet assays. Toxicol. In Vitro 27, 768–773 10.1016/j.tiv.2012.12.006 PubMed DOI

Azqueta A., Meier S., Priestley C., Gutzkow K. B., Brunborg G., Sallette J., et al. (2011). The influence of scoring method on variability in results obtained with the comet assay. Mutagenesis 26, 393–399 10.1093/mutage/geq105 PubMed DOI

Boiteux S., Radicella J. P. (2000). The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch. Biochem. Biophys. 377, 1–8 10.1006/abbi.2000.1773 PubMed DOI

Cleaver J. E., Lam E. T., Revet I. (2009). Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat. Rev. Genet. 10, 756–768 10.1038/nrg2663 PubMed DOI

Collins A. (1987). Estimates of the rate of ligation during excision repair of ultraviolet-damaged DNA in mammalian cells. Biochim. Biophys. Acta. 908, 103–106 10.1016/0167-4781(87)90027-3 PubMed DOI

Collins A. R., Azqueta A., Langie S. A. (2012). Effects of micronutrients on DNA repair. Eur. J. Nutr. 51, 261–279 10.1007/s00394-012-0318-4 PubMed DOI

Collins A. R., Dusinska M., Horvathova E., Munro E., Savio M., Stetina R. (2001). Inter-individual differences in repair of DNA base oxidation, measured in vitro with the comet assay. Mutagenesis 16, 297–301 10.1093/mutage/16.4.297 PubMed DOI

Collins A. R., Fleming I. M., Gedik C. M. (1994). In vitro repair of oxidative and ultraviolet-induced DNA damage in supercoiled nucleoid DNA by human cell extract. Biochim. Biophys. Acta. 1219, 724–727 10.1016/0167-4781(94)90236-4 PubMed DOI

Damia G., Guidi G., D'Incalci M. (1998). Expression of genes involved in nucleotide excision repair and sensitivity to cisplatin and melphalan in human cancer cell lines. Eur. J. Cancer 34, 1783–1788 10.1016/S0959-8049(98)00190-7 PubMed DOI

Dhenaut A., Boiteux S., Radicella J. P. (2000). Characterization of the hOGG1 promoter and its expression during the cell cycle. Mutat. Res. 461, 109–118 10.1016/S0921-8777(00)00042-2 PubMed DOI

Dusinska M., Dzupinkova Z., Wsolova L., Harrington V., Collins A. R. (2006). Possible involvement of XPA in repair of oxidative DNA damage deduced from analysis of damage, repair and genotype in a human population study. Mutagenesis 21, 205–211 10.1093/mutage/gel016 PubMed DOI

Fan J., Wilson D. M., 3rd. (2005). Protein-protein interactions and posttranslational modifications in mammalian base excision repair. Free Radic. Biol. Med. 38, 1121–1138 10.1016/j.freeradbiomed.2005.01.012 PubMed DOI

Hanova M., Stetina R., Vodickova L., Vaclavikova R., Hlavac P., Smerhovsky Z., et al. (2011). Modulation of DNA repair capacity and mRNA expression levels of XRCC1, hOGG1 and XPC genes in styrene-exposed workers. Toxicol. Appl. Pharmacol. 248, 194–200 10.1016/j.taap.2010.07.027 PubMed DOI

Hu H., Gatti R. A. (2011). MicroRNAs: new players in the DNA damage response. J. Mol. Cell Biol. 3, 151–158 10.1093/jmcb/mjq042 PubMed DOI PMC

Langie S. A., Cameron K. M., Waldron K. J., Fletcher K. P., von Zglinicki T., Mathers J. C. (2011). Measuring DNA repair incision activity of mouse tissue extracts towards singlet oxygen-induced DNA damage: a comet-based in vitro repair assay. Mutagenesis 26, 461–471 10.1093/mutage/ger005 PubMed DOI

Langie S. A., Knaapen A. M., Brauers K. J., van Berlo D., van Schooten F. J., Godschalk R. W. (2006). Development and validation of a modified comet assay to phenotypically assess nucleotide excision repair. Mutagenesis 21, 153–158 10.1093/mutage/gel013 PubMed DOI

Langie S. A., Kowalczyk P., Tudek B., Zabielski R., Dziaman T., Olinski R., et al. (2010). The effect of oxidative stress on nucleotide-excision repair in colon tissue of newborn piglets. Mutat. Res. 695, 75–80 10.1016/j.mrgentox.2009.12.005 PubMed DOI

Lord C. J., Ashworth A. (2012). The DNA damage response and cancer therapy. Nature 481, 287–294 10.1038/nature10760 PubMed DOI

Melis J. P., van Steeg H., Luijten M. (2013). Oxidative DNA damage and nucleotide excision repair. Antioxid. Redox Signal. 18, 2409–2419 10.1089/ars.2012.5036 PubMed DOI PMC

Nouspikel T. (2011). Multiple roles of ubiquitination in the control of nucleotide excision repair. Mech. Ageing Dev. 132, 355–365 10.1016/j.mad.2011.03.003 PubMed DOI

Olive P. L., Banath J. P. (2006). The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc. 1, 23–29 10.1038/nprot.2006.5 PubMed DOI

Pallis A. G., Karamouzis M. V. (2010). DNA repair pathways and their implication in cancer treatment. Cancer Metastasis Rev. 29, 677–685 10.1007/s10555-010-9258-8 PubMed DOI

Paz-Elizur T., Elinger D., Leitner-Dagan Y., Blumenstein S., Krupsky M., Berrebi A., et al. (2007). Development of an enzymatic DNA repair assay for molecular epidemiology studies: distribution of OGG activity in healthy individuals. DNA Rep. (Amst.) 6, 45–60 10.1016/j.dnarep.2006.08.003 PubMed DOI

Ricceri F., Matullo G., Vineis P. (2012). Is there evidence of involvement of DNA repair polymorphisms in human cancer? Mutat. Res. 736, 117–121 10.1016/j.mrfmmm.2011.07.013 PubMed DOI

Shaposhnikov S., Azqueta A., Henriksson S., Meier S., Gaivao I., Huskisson N. H., et al. (2010). Twelve-gel slide format optimised for comet assay and fluorescent in situ hybridisation. Toxicol. Lett. 195, 31–34 10.1016/j.toxlet.2010.02.017 PubMed DOI

Shivji K. K., Kenny M. K., Wood R. D. (1992). Proliferating cell nuclear antigen is required for DNA excision repair. Cell 69, 367–374 10.1016/0092-8674(92)90416-A PubMed DOI

Slyskova J., Naccarati A., Pardini B., Polakova V., Vodickova L., Smerhovsky Z., et al. (2012a). Differences in nucleotide excision repair capacity between newly diagnosed colorectal cancer patients and healthy controls. Mutagenesis 27, 225–232 10.1093/mutage/ger088 PubMed DOI

Slyskova J., Korenkova V., Collins A. R., Prochazka P., Vodickova L., Svec J., et al. (2012b). Functional, genetic, and epigenetic aspects of base and nucleotide excision repair in colorectal carcinomas. Clin. Cancer Res. 18, 5878–5887 10.1158/1078-0432.CCR-12-1380 PubMed DOI

Stevens E. V., Nishizuka S., Antony S., Reimers M., Varma S., Young L., et al. (2008). Predicting cisplatin and trabectedin drug sensitivity in ovarian and colon cancers. Mol. Cancer Ther. 7, 10–18 10.1158/1535-7163.MCT-07-0192 PubMed DOI

Vogel U., Dybdahl M., Frentz G., Nexo B. A. (2000). DNA repair capacity: inconsistency between effect of over-expression of five NER genes and the correlation to mRNA levels in primary lymphocytes. Mutat. Res. 461, 197–210 10.1016/S0921-8777(00)00051-3 PubMed DOI

Wu X., Spitz M. R., Amos C. I., Lin J., Shao L., Gu J., et al. (2006). Mutagen sensitivity has high heritability: evidence from a twin study. Cancer Res. 66, 5993–5996 10.1158/0008-5472.CAN-06-1007 PubMed DOI

Xi T., Jones I. M., Mohrenweiser H. W. (2004). Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function. Genomics 83, 970–979 10.1016/j.ygeno.2003.12.016 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...