Influence of additional far-red light on the photosynthetic and growth parameters of lettuce plants and the resistance of the photosynthetic apparatus to high irradiance
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39651408
PubMed Central
PMC11613827
DOI
10.32615/ps.2024.016
PII: PS62180
Knihovny.cz E-zdroje
- Klíčová slova
- Lactuca sativa, chlorophyll a fluorescence, far-red light, growth, photosynthesis, red light,
- Publikační typ
- časopisecké články MeSH
The effects of additional far-red light (FRL) on the photosynthetic and growth parameters of Lactuca sativa plants grown for 30 d and on the photosynthetic activity of the plants under high irradiance [4 h; 1,500 μmol(photon) m-2 s-1] were studied. The plants were grown under coloured light-emitting diodes at a ratio of red light (RL): blue light (BL): green light (GL): far-red light (FRL) = 0.7:1:0.3:0.4 or RL:BL:GL:FRL = 0.7:1:0.3:0.8 (test, T). Additional FRL led to an increase in plant biomass, height, and leaf area but to a decrease in photosynthesis and respiration rates. However, PSII activity was greater in plants with additional FRL. It is suggested that the increase in biomass occurred mainly due to an increase in leaf area but not in photosynthesis. In addition, PSII in the experiment was less resistant to high irradiance. The possible direct and indirect influences of the FRL on growth and photosynthesis were considered.
Zobrazit více v PubMed
Allakhverdiev S.I., Kreslavski V.D., Zharmukhamedov S.K. et al.: Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria. – Biochemistry-Moscow 81: 201-212, 2016. 10.1134/S0006297916030020 PubMed DOI
Berkovich Yu.A., Konovalova I.O., Smolyanina S.O. et al.: LED crop illumination inside space greenhouses. – Reach 6: 11-24, 2017. 10.1016/j.reach.2017.06.001 DOI
Boccalandro H.E., Rugnone M.L., Moreno J.E. et al.: Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. – Plant Physiol. 150: 1083-1092, 2009. 10.1104/pp.109.135509 PubMed DOI PMC
Cao K., Yu J., Xu D. et al.: Exposure to lower red to far-red light ratios improve tomato tolerance to salt stress. – BMC Plant Biol. 18: 92, 2018. 10.1186/s12870-018-1310-9 PubMed DOI PMC
Carvalho R.F., Campos M.L., Azevedo R.A.: The role of phytochromes in stress tolerance. – J. Integr. Plant Biol. 53: 920-929, 2011. 10.1111/j.1744-7909.2011.01081.x PubMed DOI
Elkins C., van Iersel M.W.: Supplemental far-red light-emitting diode light increases growth of foxglove seedlings under sole-source lighting. – HortTechnology 30: 564-569, 2020. 10.21273/HORTTECH04661-20 DOI
Franklin K.A.: Shade avoidance. – New Phytol. 179: 930-944, 2008. 10.1111/j.1469-8137.2008.02507.x PubMed DOI
Franklin K.A., Quail P.H.: Phytochrome functions in Arabidopsis development. – J. Exp. Bot. 61: 11-24, 2010. 10.1093/jxb/erp304 PubMed DOI PMC
Franklin K.A., Whitelam G.C.: Phytochromes and shade-avoidance responses in plants. – Ann. Bot.-London 96: 169-175, 2005. 10.1093/aob/mci165 PubMed DOI PMC
Gavassi M.A., Monteiro C.C., Campos M.L. et al.: Phytochromes are key regulators of abiotic stress responses in tomato. – Sci. Hortic.-Amsterdam 222: 126-135, 2017. 10.1016/j.scienta.2017.04.035 DOI
Gobets B., van Grondelle R.: Energy transfer and trapping in photosystem I. – BBA-Bioenergetics 1507: 80-99, 2001. 10.1016/S0005-2728(01)00203-1 PubMed DOI
Goltsev V.N., Kalaji H.M., Paunov M. et al.: Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. – Russ. J. Plant Physiol. 63: 869-893, 2016. 10.1134/S1021443716050058 DOI
Heraut-Bron V., Robin C., Varlet-Grancher C. et al.: Light quality (red:far-red ratio): does it affect photosynthetic activity, net CO2 assimilation, and morphology of young white clover leaves? – Can. J. Bot. 77: 1425-1431, 2000. 10.1139/b99-099 DOI
Jin W., Urbina J.L., Heuvelink E., Marcelis L.F.M.: Adding far-red to red-blue light-emitting diode light promotes yield of lettuce at different planting densities. – Front. Plant Sci. 11: 609977, 2021. 10.3389/fpls.2020.609977 PubMed DOI PMC
Kreslavski V.D., Carpentier R., Klimov V.V., Allakhverdiev S.I.: Transduction mechanisms of photoreceptor signals in plant cells. – J. Photoch. Photobio. C 10: 63-80, 2009. 10.1016/j.jphotochemrev.2009.04.001 DOI
Kreslavski V.D., Lankin A.V., Vasilyeva G.K. et al.: Effects of polyaromatic hydrocarbons on photosystem II activity in pea leaves. – Plant Physiol. Biochem. 81: 135-142, 2014. 10.1016/j.plaphy.2014.02.020 PubMed DOI
Kreslavski V.D., Los D.A., Schmitt F.-J. et al.: The impact of the phytochromes on photosynthetic processes. – BBA-Bioenergetics 1859: 400-408, 2018. 10.1016/j.bbabio.2018.03.003 PubMed DOI
Lawlor D.W., Tezara W.: Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. – Ann. Bot.-London 103: 561-579, 2009. 10.1093/aob/mcn244 PubMed DOI PMC
Legendre R., van Iersel M.W.: Supplemental far-red light stimulates lettuce growth: disentangling morphological and physiological effects. – Plants-Basel 10: 166, 2021. 10.3390/plants10010166 PubMed DOI PMC
Li Q., Kubota C.: Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. – Environ. Exp. Bot. 67: 59-64, 2009. 10.1016/j.envexpbot.2009.06.011 DOI
Lichtenthaler H.K.: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. –Method. Enzymol. 148: 350-382, 1987. 10.1016/0076-6879(87)48036-1 DOI
Liu M., Pan T., Allakhverdiev S.I. et al.: Crop halophytism: an environmentally sustainable solution for global food security. – Trends Plant Sci. 25: 630-634, 2020. 10.1016/j.tplants.2020.04.008 PubMed DOI
Middleton L.: Shade-tolerant flowering plants: adaptations and horticultural implications. – Acta Hortic. 552: 95-102, 2001. 10.17660/ActaHortic.2001.552.9 DOI
Mirecki R.M., Teramura A.H.: Effects of ultraviolet-B irradiance on soybean: V. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. – Plant Physiol. 74: 475-480, 1984. 10.1104/pp.74.3.475 PubMed DOI PMC
Pettai H., Oja V., Freiberg A., Laisk A.: Photosynthetic activity of far-red light in green plants. – BBA-Bioenergetics 1708: 311-321, 2005. 10.1016/j.bbabio.2005.05.005 PubMed DOI
Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. – J. Photoch. Photobio. B 104: 236-257, 2011. 10.1016/j.jphotobiol.2010.12.010 PubMed DOI
Tan T., Li S., Fan Y. et al.: Far-red light: A regulator of plant morphology and photosynthetic capacity. – Crop J. 10: 300-309, 2022. 10.1016/j.cj.2021.06.007 DOI
Voitsekhovskaja O.V.: Phytochromes and other (photo)receptors of information in plants. – Russ. J. Plant Physiol. 66: 351-364, 2019. 10.1134/S1021443719030154 DOI
Wassenaar M.L.J., van Ieperen W., Driever S.M.: Low red to far-red ratio increases resistance to CO2 diffusion and reduces photosynthetic efficiency in low light grown tomato plants. – Environ. Exp. Bot. 200: 104918, 2022. 10.1016/j.envexpbot.2022.104918 DOI
Yang Z.Q., Li Y.X., Zhang J.B. et al.: Effects of the red:far-red light ratio on photosynthetic characteristics of greenhouse cut Chrysanthemum. – Hortic. Sci. 40: 40-43, 2013. 10.17221/43/2012-HORTSCI DOI
Zhen S., Bugbee B.: Far-red photons have equivalent efficiency to traditional photosynthetic photons: Implications for redefining photosynthetically active radiation. – Plant Cell Environ. 43: 1259-1272, 2020a. 10.1111/pce.13730 PubMed DOI
Zhen S., Bugbee B.: Substituting far-red for traditionally defined photosynthetic photons results in equal canopy quantum yield for CO2 fixation and increased photon capture during long-term studies: Implications for re-defining PAR. – Front. Plant Sci. 11: 581156, 2020b. 10.3389/fpls.2020.581156 PubMed DOI PMC
Zhen S., Haidekker M., van Iersel M.W.: Far-red light enhances photochemical efficiency in a wavelength-dependent manner. – Physiol. Plantarum 167: 21-33, 2019. 10.1111/ppl.12834 PubMed DOI
Zhen S., van Iersel M.W.: Far-red light is needed for efficient photochemistry and photosynthesis. – J. Plant Physiol. 209: 115-122, 2017. 10.1016/j.jplph.2016.12.004 PubMed DOI