Changes in Ion Concentrations upon the Binding of Short Polyelectrolytes on Phospholipid Bilayers: Computer Study Addressing Interesting Physiological Consequences

. 2022 Sep 02 ; 14 (17) : . [epub] 20220902

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36080710

Grantová podpora
20-01233S Czech Science Foundation

This computer study was inspired by the experimental observation of Y. Qian et al. published in ACS Applied Materials and Interfaces, 2018 that the short positively charged β-peptide chains and their oligomeric analogues efficiently suppress severe medical problems caused by antimicrobial drug-resistant bacteria despite them not penetrating the bacterial membrane. Our coarse-grained molecular dynamics (dissipative particle dynamics) simulations confirm the tentative explanation of the authors of the experimental study that the potent antimicrobial activity is a result of the entropically driven release of divalent ions (mainly magnesium ions essential for the proper biological function of bacteria) into bulk solution upon the electrostatic binding of β-peptides to the bacterial membrane. The study shows that in solutions containing cations Na+, Ca2+ and Mg2+, and anions Cl-, the divalent cations preferentially concentrate close to the membrane and neutralize the negative charge. Upon the addition of positively charged oligomer chains (models of β-peptides and their analogues), the oligomers electrostatically bind to the membrane replacing divalent ions, which are released into bulk solvent. Our simulations indicate that the entropy of small ions (which controls the behavior of synthetic polyelectrolyte solutions) plays an important role in this and also in other similar biologically important systems.

Zobrazit více v PubMed

Voet D., Voet J.G. Biochemistry. 4th ed. John Wiley & Sons; Hoboken, NJ, USA: 2010. pp. 386–449.

Nagarajan R., Ruckenstein E. Theory of surfactant self-assembly—A predictive molecular thermodynamic approach. Langmuir. 1991;7:2934–2969. doi: 10.1021/la00060a012. DOI

Nagarajan R., Ganesh K. Block copolymer self-assembly in selective solvents—Spherical micelles with segregated cores. J. Chem. Phys. 1989;90:5843–5856. doi: 10.1063/1.456390. DOI

Halperin A., Alexander S. Polymeric micelles—Their relaxation kinetics. Macromolecules. 1989;22:2403–2412. doi: 10.1021/ma00195a069. DOI

Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature. 2005;437:640–647. doi: 10.1038/nature04162. PubMed DOI

Hiemenz P.C., Rajagopalan R. Principles of Colloid and Surface Chemistry, Revised and Expanded. CRC Press; Boca Raton, FL, USA: 2016. pp. 4–5.

Newton A.C., Bootman M.D., Scott J.D. Second messengers. Cold Spring Harb. Perspect. Biol. 2016;8:a005926. doi: 10.1101/cshperspect.a005926. PubMed DOI PMC

Wu G., Ding J., Li H., Li L., Zhao R., Shen Z., Fan X., Xi T. Effects of Cations and PH on Antimicrobial Activity of Thanatin and s-Thanatin Against Escherichia coli ATCC25922 and B-subtilis ATCC 21332. Curr. Microbiol. 2008;57:552–557. doi: 10.1007/s00284-008-9241-6. PubMed DOI

Golshani-Hebroni S. Mg++ requirement for MtHK binding, and Mg++ stabilization of mitochondrial membranes via activation of MtHK & MtCK and promotion of mitochondrial permeability transition pore closure: A hypothesis on mechanisms underlying Mg++’s antioxidant and cytoprotective effects. Gene. 2016;581:1–13. doi: 10.1016/j.gene.2015.12.046. PubMed DOI

Saris N., Mervaala E., Karppanen H., Khawaja J., Lewenstam A. Magnesium—An update on physiological, clinical and analytical aspects. Clin. Chim. Acta. 2000;294:1–26. doi: 10.1016/S0009-8981(99)00258-2. PubMed DOI

Kumar M., Srivastava S. Effect of calcium and magnesium on the antimicrobial action of enterocin LR/6 produced by Enterococcus faecium LR/6. Int. J. Antimicrob. Agents. 2011;37:572–575. doi: 10.1016/j.ijantimicag.2011.01.014. PubMed DOI

Zhekova H.R., Ngo V., da Silva M.C., Salahub D., Noskov S. Selective ion binding and transport by membrane proteins—A computational perspective. Coord. Chem. Rev. 2017;345:108–136. doi: 10.1016/j.ccr.2017.03.019. DOI

Meriney S.D., Umbach J.A., Gundersen C.B. Fast, Ca2+-dependent exocytosis at nerve terminals: Shortcomings of SNARE-based models. Prog. Neurobiol. 2014;121:55–90. doi: 10.1016/j.pneurobio.2014.07.001. PubMed DOI

Qian Y., Qi F., Chen Q., Zhang Q., Qiao Z., Zhang S., Wei T., Yu Q., Yu S., Mao Z., et al. Surface modified with a host defense peptide-mimicking β-peptide polymer kills bacteria on contact with high efficacy. ACS Appl. Mater. Interfaces. 2018;10:15395–15400. doi: 10.1021/acsami.8b01117. PubMed DOI

Hancock R.E., Sahl H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 2006;24:1551–1557. doi: 10.1038/nbt1267. PubMed DOI

Jiang Y., Yang X., Zhu R., Hu K., Lan W.W., Wu F., Yang L. Acid-activated antimicrobial random copolymers: A mechanism-guided design of antimicrobial peptide mimics. Macromolecules. 2013;46:3959–3964. doi: 10.1021/ma400484b. DOI

Kuroda K., DeGrado W.F. Amphiphilic polymethacrylate derivatives as antimicrobial agents. J. Am. Chem. Soc. 2005;127:4128–4129. doi: 10.1021/ja044205+. PubMed DOI

Lienkamp K., Madkour A.E., Musante A., Nelson C.F., Nusslein K., Tew G.N. Antimicrobial polymers prepared by ROMP with unprecedented selectivity: A molecular construction kit approach. J. Am. Chem. Soc. 2008;130:9836–9843. doi: 10.1021/ja801662y. PubMed DOI PMC

Nederberg F., Zhang Y., Tan J.P., Xu K., Wang H., Yang C., Gao S., Guo X.D., Fukushima K., Li L., et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nat. Chem. 2011;3:409–414. doi: 10.1038/nchem.1012. PubMed DOI

Palermo E.F., Sovadinova I., Kuroda K. Structural determinants of antimicrobial activity and biocompatibility in membrane-disrupting methacrylamide random copolymers. Biomacromolecules. 2009;10:3098–3107. doi: 10.1021/bm900784x. PubMed DOI

Qian Y.X., Zhang D.F., Wu Y.M., Chen Q., Liu R.H. The design, synthesis and biological activity study of nylon-3 polymers as mimics of host defense peptides. Acta Polym. Sin. 2016;10:1300–1311.

Sambhy V., Peterson B.R., Sen A. Antibacterial and hemolytic activities of pyridinium polymers as a function of the spatial relationship between the positive charge and the pendant alkyl tail. Angew. Chem. 2008;120:1270–1274. doi: 10.1002/ange.200702287. PubMed DOI

Song A., Walker S.G., Parker K.A., Sampson N.S. Antibacterial studies of cationic polymers with alternating, random, and uniform backbones. ACS Chem. Biol. 2011;6:590–599. doi: 10.1021/cb100413w. PubMed DOI PMC

Xiong M., Lee M.W., Mansbach R.A., Song Z., Bao Y., Peek R.M., Yao C., Chen L.F., Ferguson A.L., Wong G.C., et al. Helical antimicrobial polypeptides with radial amphiphilicity. Proc. Natl. Acad. Sci. USA. 2015;112:13155–13160. doi: 10.1073/pnas.1507893112. PubMed DOI PMC

Yu K., Lo J.C., Mei Y., Haney E.F., Siren E., Kalathottukaren M.T., Hancock R.E., Lange D., Kizhakkedathu J.N. Toward infection-resistant surfaces: Achieving high antimicrobial peptide potency by modulating the functionality of polymer brush and peptide. ACS Appl. Mater. Interfaces. 2015;7:28591–28605. doi: 10.1021/acsami.5b10074. PubMed DOI

Zasloff M. Antimicrobial peptides of multicellular organisms: My perspective. Antimicrob. Pept. 2019;1117:3–6. PubMed

Boman H. Antibacterial peptides: Basic facts and emerging concepts. J. Intern. Med. 2003;254:197–215. doi: 10.1046/j.1365-2796.2003.01228.x. PubMed DOI

Gelman M.A., Weisblum B., Lynn D.M., Gellman S.H. Biocidal activity of polystyrenes that are cationic by virtue of protonation. Org. Lett. 2004;6:557–560. doi: 10.1021/ol036341+. PubMed DOI

Sellenet P.H., Allison B., Applegate B.M., Youngblood J.P. Synergistic activity of hydrophilic modification in antibiotic polymers. Biomacromolecules. 2007;8:19–23. doi: 10.1021/bm0605513. PubMed DOI

Liu R., Chen X., Falk S.P., Masters K.S., Weisblum B., Gellman S.H. Nylon-3 polymers active against drug-resistant Candida albicans biofilms. J. Am. Chem. Soc. 2015;137:2183–2186. doi: 10.1021/ja512567y. PubMed DOI PMC

Liu R., Chen X., Gellman S.H., Masters K.S. Nylon-3 polymers that enable selective culture of endothelial cells. J. Am. Chem. Soc. 2013;135:16296–16299. doi: 10.1021/ja408634a. PubMed DOI PMC

Liu R., Chen X., Hayouka Z., Chakraborty S., Falk S.P., Weisblum B., Masters K.S., Gellman S.H. Nylon-3 polymers with selective antifungal activity. J. Am. Chem. Soc. 2013;135:5270–5273. doi: 10.1021/ja4006404. PubMed DOI PMC

Liu R., Chen X., Chakraborty S., Lemke J.J., Hayouka Z., Chow C., Welch R.A., Weisblum B., Masters K.S., Gellman S.H. Tuning the biological activity profile of antibacterial polymers via subunit substitution pattern. J. Am. Chem. Soc. 2014;136:4410–4418. doi: 10.1021/ja500367u. PubMed DOI PMC

Liu R., Masters K.S., Gellman S.H. Polymer chain length effects on fibroblast attachment on nylon-3-modified surfaces. Biomacromolecules. 2012;13:1100–1105. doi: 10.1021/bm201847n. PubMed DOI PMC

Mowery B.P., Lee S.E., Kissounko D.A., Epand R.F., Epand R.M., Weisblum B., Stahl S.S., Gellman S.H. Mimicry of antimicrobial host-defense peptides by random copolymers. J. Am. Chem. Soc. 2007;129:15474–15476. doi: 10.1021/ja077288d. PubMed DOI

Teng P., Huo D., Nimmagadda A., Wu J., She F., Su M., Lin X., Yan J., Cao A., Xi C., et al. Small antimicrobial agents based on acylated reduced amide scaffold. J. Med. Chem. 2016;59:7877–7887. doi: 10.1021/acs.jmedchem.6b00640. PubMed DOI PMC

Choi H., Chakraborty S., Liu R., Gellman S.H., Weisshaar J.C. Single-cell, time-resolved antimicrobial effects of a highly cationic, random nylon-3 copolymer on live Escherichia coli. ACS Chem. Biol. 2016;11:113–120. doi: 10.1021/acschembio.5b00547. PubMed DOI PMC

Xue R., Chu X., Yang F., Liu Z., Yin L., Tang H. Imidazolium-Based Polypeptide Coating with a Synergistic Antibacterial Effect and a Biofilm-Responsive Property. ACS Macro Lett. 2022;11:387–393. doi: 10.1021/acsmacrolett.2c00017. PubMed DOI

Ishantha Senevirathne S., Hasan J., Mathew A., Jaggessar A., Yarlagadda P.K. Trends in Bactericidal Nanostructured Surfaces: An Analytical Perspective. ACS Appl. Bio Mater. 2021;4:7626–7642. doi: 10.1021/acsabm.1c00839. PubMed DOI

Juffer A., Shepherd C., Vogel H. Protein-membrane electrostatic interactions: Application of the Lekner summation technique. J. Chem. Phys. 2001;114:1892–1905. doi: 10.1063/1.1334901. DOI

Hoogerbrugge P., Koelman J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL Europhys. Lett. 1992;19:155–160. doi: 10.1209/0295-5075/19/3/001. DOI

Groot R.D., Warren P.B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997;107:4423–4435. doi: 10.1063/1.474784. DOI

Espanol P., Warren P. Statistical mechanics of dissipative particle dynamics. EPL Europhys. Lett. 1995;30:191. doi: 10.1209/0295-5075/30/4/001. DOI

Karimi-Varzaneh H.A., Van Der Vegt N.F., Müller-Plathe F., Carbone P. How good are coarse-grained polymer models? A comparison for atactic polystyrene. ChemPhysChem. 2012;13:3428–3439. doi: 10.1002/cphc.201200111. PubMed DOI

Procházka K., Limpouchová Z., Štěpánek M., Šindelka K., Lísal M. DPD Modelling of the Self-and Co-Assembly of Polymers and Polyelectrolytes in Aqueous Media: Impact on Polymer Science. Polymers. 2022;14:404. doi: 10.3390/polym14030404. PubMed DOI PMC

Atkins P., Keeler J., de Paula J. Atkins’ Physical Chemistry. Oxford University Press; Oxford, UK: 2014. pp. 600–601.

Lee M.T., Vishnyakov A., Neimark A.V. Coarse-grained model of water diffusion and proton conductivity in hydrated polyelectrolyte membrane. J. Chem. Phys. 2016;144:014902. doi: 10.1063/1.4938271. PubMed DOI

Lee M.T., Vishnyakov A., Neimark A.V. Calculations of Critical Micelle Concentration by Dissipative Particle Dynamics Simulations: The Role of Chain Rigidity. J. Phys. Chem. B. 2013;117:10304–10310. doi: 10.1021/jp4042028. PubMed DOI

Groot R.D. Electrostatic interactions in dissipative particle dynamics—Simulation of polyelectrolytes and anionic surfactants. J. Chem. Phys. 2003;118:11265–11277. doi: 10.1063/1.1574800. DOI

Posel Z., Limpouchova Z., Sindelka K., Lisal M., Prochazka K. Dissipative particle dynamics study of the pH-dependent behavior of poly (2-vinylpyridine)-block-poly (ethylene oxide) diblock copolymer in aqueous buffers. Macromolecules. 2014;47:2503–2514. doi: 10.1021/ma402293c. DOI

Ibergay C., Malfreyt P., Tildesley D.J. Electrostatic interactions in dissipative particle dynamics: Toward a mesoscale modeling of the polyelectrolyte brushes. J. Chem. Theory Comput. 2009;5:3245–3259. doi: 10.1021/ct900296s. PubMed DOI

González-Melchor M., Mayoral E., Velázquez M.E., Alejandre J. Electrostatic interactions in dissipative particle dynamics using the Ewald sums. J. Chem. Phys. 2006;125:224107. doi: 10.1063/1.2400223. PubMed DOI

Procházka K., Šindelka K., Wang X., Limpouchová Z., Lísal M. Self-assembly and co-assembly of block polyelectrolytes in aqueous solutions. Dissipative particle dynamics with explicit electrostatics. Mol. Phys. 2016;114:3077–3092. doi: 10.1080/00268976.2016.1225130. DOI

Lahmar F., Tzoumanekas C., Theodorou D.N., Rousseau B. Onset of Entanglements Revisited. Dynamical Analysis. Macromolecules. 2009;42:7485–7494. doi: 10.1021/ma9011329. DOI

Warren P.B., Vlasov A. Screening properties of four mesoscale smoothed charge models, with application to dissipative particle dynamics. J. Chem. Phys. 2014;140:084904. doi: 10.1063/1.4866375. PubMed DOI

Šindelka K., Limpouchová Z., Lísal M., Procházka K. Dissipative particle dynamics study of electrostatic self-assembly in aqueous mixtures of copolymers containing one neutral water-soluble block and one either positively or negatively charged polyelectrolyte block. Macromolecules. 2014;47:6121–6134. doi: 10.1021/ma501018x. PubMed DOI

Šindelka K., Limpouchová Z., Lísal M., Procházka K. The electrostatic co-assembly in non-stoichiometric aqueous mixtures of copolymers composed of one neutral water-soluble and one polyelectrolyte (either positively or negatively charged) block: A dissipative particle dynamics study. Phys. Chem. Chem. Phys. 2016;18:16137–16151. doi: 10.1039/C6CP01047D. PubMed DOI

Darden T., York D., Pedersen L. Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI

Shillcock J.C., Lipowsky R. Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations. J. Chem. Phys. 2002;117:5048–5061. doi: 10.1063/1.1498463. DOI

Gao L., Shillcock J., Lipowsky R. Improved dissipative particle dynamics simulations of lipid bilayers. J. Chem. Phys. 2007;126:01B602. doi: 10.1063/1.2424698. PubMed DOI

Groot R.D., Rabone K. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys. J. 2001;81:725–736. doi: 10.1016/S0006-3495(01)75737-2. PubMed DOI PMC

Li X., Gao L., Fang W. Dissipative particle dynamics simulations for phospholipid membranes based on a four-to-one coarse-grained mapping scheme. PLoS ONE. 2016;11:e0154568. doi: 10.1371/journal.pone.0154568. PubMed DOI PMC

Jakobsen A.F., Mouritsen O.G., Besold G. Artifacts in dynamical simulations of coarse-grained model lipid bilayers. J. Chem. Phys. 2005;122:204901. doi: 10.1063/1.1900725. PubMed DOI

Jakobsen A.F. Constant-pressure and constant-surface tension simulations in dissipative particle dynamics. J. Chem. Phys. 2005;122:124901. doi: 10.1063/1.1867374. PubMed DOI

Kranenburg M., Nicolas J.P., Smit B. Comparison of mesoscopic phospholipid–water models. Phys. Chem. Chem. Phys. 2004;6:4142–4151. doi: 10.1039/B406433J. DOI

Šindelka K., Limpouchová Z., Procházka K. Computer study of the solubilization of polymer chains in polyelectrolyte complex cores of polymeric nanoparticles in aqueous media. Phys. Chem. Chem. Phys. 2018;20:29876–29888. doi: 10.1039/C8CP05907A. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Self-Assembly of Symmetric Copolymers in Slits with Inert and Attractive Walls

. 2023 Nov 18 ; 15 (22) : . [epub] 20231118

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...