• This record comes from PubMed

DPD Modelling of the Self- and Co-Assembly of Polymers and Polyelectrolytes in Aqueous Media: Impact on Polymer Science

. 2022 Jan 20 ; 14 (3) : . [epub] 20220120

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
20-01233S Czech Science Foundation
e-INFRA CZ LM2018140 Ministry of Education, Youth and Sports of the Czech Republic

This review article is addressed to a broad community of polymer scientists. We outline and analyse the fundamentals of the dissipative particle dynamics (DPD) simulation method from the point of view of polymer physics and review the articles on polymer systems published in approximately the last two decades, focusing on their impact on macromolecular science. Special attention is devoted to polymer and polyelectrolyte self- and co-assembly and self-organisation and to the problems connected with the implementation of explicit electrostatics in DPD numerical machinery. Critical analysis of the results of a number of successful DPD studies of complex polymer systems published recently documents the importance and suitability of this coarse-grained method for studying polymer systems.

See more in PubMed

Marras A.E., Ting J.M., Stevens K.C., Tirrell M.V. Advances in the Structural Design of Polyelectrolyte Complex Micelles. J. Phys. Chem. B. 2021;125:7076–7089. doi: 10.1021/acs.jpcb.1c01258. PubMed DOI PMC

Shah S., Leon L. Structural dynamics, phase behavior, and applications of polyelectrolyte complex micelles. Curr. Opin. Colloid Interface Sci. 2021;53:101424. doi: 10.1016/j.cocis.2021.101424. DOI

Gohy J.-F., Zhao Y. Photo-responsive block copolymer micelles: Design and behavior. Chem. Soc. Rev. 2013;42:7117–7129. doi: 10.1039/c3cs35469e. PubMed DOI

Walther A., Mueller A.H.E. Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chem. Rev. 2013;113:5194–5261. doi: 10.1021/cr300089t. PubMed DOI

Mai Y.Y., Eisenberg A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012;41:5969–5985. doi: 10.1039/c2cs35115c. PubMed DOI

Moughton A.O., Hillmyer M.A., Lodge T.P. Multicompartment Block Polymer Micelles. Macromolecules. 2012;45:2–19. doi: 10.1021/ma201865s. DOI

Rud O.V., Mercurieva A.A., Leermakers F.A.M., Birshtein T.M. Collapse of Polyelectrolyte Star. Theory and Modeling. Macromolecules. 2012;45:2145–2160. doi: 10.1021/ma202201m. DOI

Zhulina E., Borisov O.V. Theory of Block Polymer Micelles: Recent Advances and Current Challenges. Macromolecules. 2012;45:4429–4440. doi: 10.1021/ma300195n. DOI

Du J., O’Reilly R.K. Anisotropic particles with patchy, multicompartment and Janus architectures: Preparation and application. Chem. Soc. Rev. 2011;40:2402–2416. doi: 10.1039/c0cs00216j. PubMed DOI

Voets I.K., Leermakers F.A.M. Self-consistent field theory for obligatory coassembly. Phys. Rev. E. 2008;78:061801. doi: 10.1103/PhysRevE.78.061801. PubMed DOI

O’Reilly R.K., Hawker C.J., Wooley K.L. Cross-linked block copolymer micelles: Functional nanostructures of great potential and versatility. Chem. Soc. Rev. 2006;35:1068–1083. doi: 10.1039/b514858h. PubMed DOI

Förster S., Plantenberg T. From self-organizing polymers to nanohybrid and biomaterials. Angew. Chem.-Int. Ed. 2002;41:689–714. doi: 10.1002/1521-3773(20020301)41:5<688::AID-ANIE688>3.0.CO;2-3. PubMed DOI

Förster S., Hermsdorf N., Böttcher C., Lindner P. Structure of Polyelectrolyte Block Copolymer Micelles. Macromolecules. 2002;35:4096–4105. doi: 10.1021/ma011565y. DOI

Zhang L., Eisenberg A. Multiple Morphologies and Characteristics of “Crew-Cut” Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions. J. Am. Chem. Soc. 1996;118:3168–3181. doi: 10.1021/ja953709s. DOI

Leung C.-H., Lin S., Zhong H.-J., Ma D.-L. Metal complexes as potential modulators of inflammatory and autoimmune responses. Chem. Sci. 2015;6:871–884. doi: 10.1039/C4SC03094J. PubMed DOI PMC

Ahamed M.A.R., Azarudeen R.S., Kani N.M. Antimicrobial Applications of Transition Metal Complexes of Benzothiazole Based Terpolymer: Synthesis, Characterization, and Effect on Bacterial and Fungal Strains. Bioinorg. Chem. Appl. 2014;2014:764085. doi: 10.1155/2014/764085. PubMed DOI PMC

Kataoka K., Harada A., Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 2012;64:37–48. doi: 10.1016/j.addr.2012.09.013. PubMed DOI

Rösler A., Vandermeulen G.W., Klok H.-A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliv. Rev. 2012;64:270–279. doi: 10.1016/j.addr.2012.09.026. PubMed DOI

Safinya C.R., Ewert K.K. Liposomes derived from molecular vases. Nature. 2012;489:372–374. doi: 10.1038/489372b. PubMed DOI

Liu J., Huang W., Pang Y., Zhu X., Zhou Y., Yan D. The in vitro biocompatibility of self-assembled hyperbranched copolyphosphate nanocarriers. Biomaterials. 2010;31:5643–5651. doi: 10.1016/j.biomaterials.2010.03.068. PubMed DOI

Shen Y., Zhan Y., Tang J., Xu P., Johnson P.A., Radosz M., van Kirk E.A., Murdoch W.J. Multifunctioning pH-Responsive Nanoparticles from Hierarchical Self-Assembly of Polymer Brush for Cancer Drug Delivery. Aiche J. 2008;54:2979–2989. doi: 10.1002/aic.11600. DOI

Deming T.J. Synthetic polypeptides for biomedical applications. Prog. Polym. Sci. 2007;32:858–875. doi: 10.1016/j.progpolymsci.2007.05.010. DOI

Sutton D., Nasongkla N., Blanco E., Gao J. Functionalized Micellar Systems for Cancer Targeted Drug Delivery. Pharm. Res. 2007;24:1029–1046. doi: 10.1007/s11095-006-9223-y. PubMed DOI

Blau W.J., Fleming A.J. Materials science—Designer nanotubes by molecular self-assembly. Science. 2004;304:1457–1458. doi: 10.1126/science.1099568. PubMed DOI

Kabanov A., Vinogradov S.V., Suzdaltseva Y., Alakhov V.Y. Water-Soluble Block Polycations as Carriers for Oligonucleotide Delivery. Bioconjugate Chem. 1995;6:639–643. doi: 10.1021/bc00036a001. PubMed DOI

Cuomo F., Ceglie A., De Leonardis A., Lopez F. Polymer Capsules for Enzymatic Catalysis in Confined Environments. Catalysts. 2018;9:1. doi: 10.3390/catal9010001. DOI

Boucher-Jacobs C., Rabnawaz M., Katz J.S., Even R., Guironnet D. Encapsulation of catalyst in block copolymer micelles for the polymerization of ethylene in aqueous medium. Nat. Commun. 2018;9:841. doi: 10.1038/s41467-018-03253-5. PubMed DOI PMC

Hilke R., Pradeep N., Madhavan P., Vainio U., Behzad A.R., Sougrat R., Nunes S.P., Peinemann K.V. Block Copolymer Hollow Fiber Membranes with Catalytic Activity and pH-Response. ACS Appl. Mater. Interfaces. 2013;5:7001–7006. doi: 10.1021/am401163h. PubMed DOI

Peters R.J.R.W., Marguet M., Marais S., Fraaije M.W., van Hest J.C.M., Lecommandoux S. Cascade Reactions in Multicompartmentalized Polymersomes. Angew. Chem. Int. Ed. 2014;53:146–150. doi: 10.1002/anie.201308141. PubMed DOI

Dwars T., Paetzold E., Oehme G. Reactions in Micellar Systems. Angew. Chem. Int. Ed. 2005;44:7174–7199. doi: 10.1002/anie.200501365. PubMed DOI

Jang J.D., Jeon S.-W., Yoon Y.-J., Bang J., Han Y.S., Kim T.-H. Self-assembly of gold nanoparticles in a block copolymer aggregate template driven by hydrophobic interactions. Polym. Chem. 2019;10:6269–6277. doi: 10.1039/C9PY01266D. DOI

Whitesides G.M., Grzybowski B. Self-assembly at all scales. Science. 2002;295:2418–2421. doi: 10.1126/science.1070821. PubMed DOI

Nishi Y. Lithium ion secondary battery technologies, present and future. Macromol. Symp. 2000;156:187–194. doi: 10.1002/1521-3900(200007)156:1<187::AID-MASY187>3.0.CO;2-B. DOI

Higashi F., Cho C.S., Kakinoki H., Sumita O. A new organic semiconducting polymer from Cu2 chelate of poly(vinyl alcohol)and iodine. J. Polym. Sci. Polym. Chem. Ed. 1979;17:313–318. doi: 10.1002/pol.1979.170170202. DOI

Lysenko E.A., Bronich T.K., Slonkina E.V., Eisenberg A., Kabanov A.V.A., Kabanov A.V. Block Ionomer Complexes with Polystyrene Core-Forming Block in Selective Solvents of Various Polarities. 1. Solution Behavior and Self-Assembly in Aqueous Media. Macromolecules. 2002;35:6351–6361. doi: 10.1021/ma020048s. DOI

Stepanek M., Krijtova K., Prochazka K., Teng Y., Webber S.E., Munk P. Solubilization and release of hydrophobic compounds from block copolymer micelles. I. Partitioning of pyrene between polyelectrolyte micelles and the aqueous phase. Acta Polym. 1998;49:96–102. doi: 10.1002/(SICI)1521-4044(199802)49:2/3<96::AID-APOL96>3.0.CO;2-W. DOI

Zhang L.F., Eisenberg A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution. Polym. Adv. Technol. 1998;9:677–699. doi: 10.1002/(SICI)1099-1581(1998100)9:10/11<677::AID-PAT845>3.0.CO;2-#. DOI

Kiserow D., Prochazka K., Ramireddy C., Tuzar Z., Munk P., Webber S.E. Fluorometric and quasi-elastic light-scattering study of the solubilization of nonpolar low-molar mass compounds into water-soluble block-copolymer micelles. Macromolecules. 1992;25:461–469. doi: 10.1021/ma00027a072. DOI

Prochazka K., Kiserow D., Ramireddy C., Tuzar Z., Munk P., Webber S.E. Time-resolved fluorescence studies of the chain dynamics of naphthalene-labeled polystyrene-block-poly(methacrylic acid) micelles in aqueous media. Macromolecules. 1992;25:454–460. doi: 10.1021/ma00027a071. DOI

Ramireddy C., Tuzar Z., Prochazka K., Webber S.E., Munk P. Styrene-tert-butyl methacrylate and styrene-methacrylic acid block copolymers: Synthesis and characterization. Macromolecules. 1992;25:2541–2545. doi: 10.1021/ma00035a037. DOI

Limpouchová Z., Viduna D., Procházka K. Mixed Systems of Tethered Chains in Spherical Volumes. A Model for Cores of Mixed Copolymer Micelles. Macromolecules. 1997;30:8027–8035. doi: 10.1021/ma970001k. DOI

Viduna D., Limpouchová Z., Procházka K. Conformations of Self-Avoiding Tethered Chains and Nonradiative Energy Transfer and Migration in Dense and Constrained Systems. A Model for Cores of Polymeric Micelles. Macromolecules. 1997;30:7263–7272. doi: 10.1021/ma970002c. DOI

Limpouchová Z., Procházka K. A Monte Carlo Study of Insoluble Block Orientations in Swollen Cores of Multimolecular Block Copolymer Micelles. Collect. Czechoslov. Chem. Commun. 1994;59:803–819. doi: 10.1135/cccc19940803. DOI

Nagarajan R., Ruckenstein E. Theory of surfactant self-assembly: A predictive molecular thermodynamic approach. Langmuir. 1991;7:2934–2969. doi: 10.1021/la00060a012. DOI

Halperin A., Alexander S. Polymeric micelles: Their relaxation kinetics. Macromolecules. 1989;22:2403–2412. doi: 10.1021/ma00195a069. DOI

Nagarajan R., Ganesh K. Block copolymer self-assembly in selective solvents: Spherical micelles with segregated cores. J. Chem. Phys. 1989;90:5843–5856. doi: 10.1063/1.456390. DOI

Nagarajan R., Ganesh K. Block copolymer self-assembly in selective solvents: Theory of solubilization in spherical micelles. Macromolecules. 1989;22:4312–4325. doi: 10.1021/ma00201a029. DOI

Hoven C.V., Garcia A., Bazan G.C., Nguyen T.-Q. Recent Applications of Conjugated Polyelectrolytes in Optoelectronic Devices. Adv. Mater. 2008;20:3793–3810. doi: 10.1002/adma.200800533. DOI

Prausnitz M.R., Langer R. Transdermal drug delivery. Nat. Biotechnol. 2008;26:1261–1268. doi: 10.1038/nbt.1504. PubMed DOI PMC

Thomas S.W., Joly G.D., Swager T.M. Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chem. Rev. 2007;107:1339–1386. doi: 10.1021/cr0501339. PubMed DOI

Discher D.E., Eisenberg A. Polymer vesicles. Science. 2002;297:967–973. doi: 10.1126/science.1074972. PubMed DOI

Singh M., Briones M., Ott G., O’Hagan D. Cationic microparticles: A potent delivery system for DNA vaccines. Proc. Natl. Acad. Sci. USA. 2000;97:811–816. doi: 10.1073/pnas.97.2.811. PubMed DOI PMC

Drummond C., Fong C. Surfactant self-assembly objects as novel drug delivery vehicles. Curr. Opin. Colloid Interface Sci. 1999;4:449–456. doi: 10.1016/S1359-0294(00)00020-0. DOI

Delisavva F., Uchman M., Štěpánek M., Kereïche S., Hordyjewicz-Baran Z., Appavou M.-S., Procházka K. Coassembly of Gemini Surfactants with Double Hydrophilic Block Polyelectrolytes Leading to Complex Nanoassemblies. Macromolecules. 2017;50:8745–8754. doi: 10.1021/acs.macromol.7b01330. DOI

Uchman M., Gradzielski M., Angelov B., Tošner Z., Oh J., Chang T., Štěpánek M., Procházka K. Thermodynamic and Kinetic Aspects of Coassembly of PEO–PMAA Block Copolymer and DPCl Surfactants into Ordered Nanoparticles in Aqueous Solutions Studied by ITC, NMR, and Time-Resolved SAXS Techniques. Macromolecules. 2013;46:2172–2181. doi: 10.1021/ma302503w. DOI

Uchman M., Štěpánek M., Prévost S., Angelov B., Bednár J., Appavou M.-S., Gradzielski M., Procházka K. Coassembly of Poly(ethylene oxide)-block-poly(methacrylic acid) and N-Dodecylpyridinium Chloride in Aqueous Solutions Leading to Ordered Micellar Assemblies within Copolymer Aggregates. Macromolecules. 2012;45:6471–6480. doi: 10.1021/ma301510j. DOI

Lefèvre N., Fustin C.-A., Gohy J.-F. Polymeric Micelles Induced by Interpolymer Complexation. Macromol. Rapid Commun. 2009;30:1871–1888. doi: 10.1002/marc.200900355. PubMed DOI

Voets I.K., de Keizer A., Stuart M.A.C. Complex coacervate core micelles. Adv. Colloid Interface Sci. 2009;147–148:300–318. doi: 10.1016/j.cis.2008.09.012. PubMed DOI

Stuart M.A.C., Hofs B., Voets I., de Keizer A. Assembly of polyelectrolyte-containing block copolymers in aqueous media. Curr. Opin. Colloid Interface Sci. 2005;10:30–36. doi: 10.1016/j.cocis.2005.04.004. DOI

Berret J.-F., Vigolo B., Eng A.R., Hervé P., Grillo I., Yang L. Electrostatic Self-Assembly of Oppositely Charged Copolymers and Surfactants: A Light, Neutron, and X-ray Scattering Study. Macromolecules. 2004;37:4922–4930. doi: 10.1021/ma0498722. DOI

van der Burgh S., de Keizer A., Stuart M.A.C. Complex coacervation core micelles. Colloidal stability and aggregation mechanism. Langmuir. 2004;20:1073–1084. doi: 10.1021/la035012n. PubMed DOI

Kramarenko E.Y., Khokhlov A.R., Reineker P. Micelle formation in a dilute solution of block copolymers with a polyelectrolyte block complexed with oppositely charged linear chains. J. Chem. Phys. 2003;119:4945–4952. doi: 10.1063/1.1594720. DOI

Manning G.S. Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties. J. Chem. Phys. 1969;51:924–933. doi: 10.1063/1.1672157. DOI

Dobrynin A.V., Rubinstein M. Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci. 2005;30:1049–1118. doi: 10.1016/j.progpolymsci.2005.07.006. DOI

Rumyantsev A.M., Zhulina E., Borisov O.V. Scaling Theory of Complex Coacervate Core Micelles. ACS Macro Lett. 2018;7:811–816. doi: 10.1021/acsmacrolett.8b00316. PubMed DOI

Borreguero J.M., Pincus P.A., Sumpter B.G., Goswami M. Unraveling the Agglomeration Mechanism in Charged Block Copolymer and Surfactant Complexes. Macromolecules. 2017;50:1193–1205. doi: 10.1021/acs.macromol.6b02319. DOI

Šindelka K., Limpouchová Z., Lísal M., Procházka K. The electrostatic co-assembly in non-stoichiometric aqueous mixtures of copolymers composed of one neutral water-soluble and one polyelectrolyte (either positively or negatively charged) block: A dissipative particle dynamics study. Phys. Chem. Chem. Phys. 2016;18:16137–16151. doi: 10.1039/C6CP01047D. PubMed DOI

Goswami M., Borreguero J.M., Pincus P.A., Sumpter B.G. Surfactant-Mediated Polyelectrolyte Self-Assembly in a Polyelectrolyte–Surfactant Complex. Macromolecules. 2015;48:9050–9059. doi: 10.1021/acs.macromol.5b02145. DOI

Šindelka K., Limpouchová Z., Lísal M., Procházka K. Dissipative Particle Dynamics Study of Electrostatic Self-Assembly in Aqueous Mixtures of Copolymers Containing One Neutral Water-Soluble Block and One Either Positively or Negatively Charged Polyelectrolyte Block. Macromolecules. 2014;47:6121–6134. doi: 10.1021/ma501018x. PubMed DOI

Lysenko E.A., Bilan R.S., Chelushkin P.S. Block-copolymer micelles with a interpolyelectrolyte crown. Polym. Sci. Ser. C. 2017;59:35–48. doi: 10.1134/S1811238217010076. DOI

Matejicek P., Zednik J., Ušelová K., Pleštil J., Fanfrlik J., Nykänen A., Ruokolainen J., Hobza P., Prochazka K. Stimuli-Responsive Nanoparticles Based on Interaction of Metallacarborane with Poly(ethylene oxide) Macromolecules. 2009;42:4829–4837. doi: 10.1021/ma900484y. DOI

Palyulin V.V., Potemkin I.I. Mixed versus Ordinary Micelles in the Dilute Solution of AB and BC Diblock Copolymers. Macromolecules. 2008;41:4459–4463. doi: 10.1021/ma8003949. DOI

Humpolickova J., Stepanek M., Prochazka K., Hof M. Solvent relaxation study of pH-dependent hydration of poly(oxyethylene) shells in polystyrene-block-poly(2-vinylpyridine)-block-poly(oxyethylene) micelles in aqueous solutions. J. Phys. Chem. A. 2005;109:10803–10812. doi: 10.1021/jp053348v. PubMed DOI

Cai Y., Armes S. A Zwitterionic ABC Triblock Copolymer That Forms a “Trinity” of Micellar Aggregates in Aqueous Solution. Macromolecules. 2004;37:7116–7122. doi: 10.1021/ma048789b. DOI

Lysenko E.A., Chelushkin P.S., Bronich T.K., Eisenberg A., Kabanov A.V.A., Kabanov A.V. Formation of Multilayer Polyelectrolyte Complexes by Using Block Ionomer Micelles as Nucleating Particles. J. Phys. Chem. B. 2004;108:12352–12359. doi: 10.1021/jp048777s. DOI

Plestil J., Kriz J., Tuzar Z., Prochazka K., Melnichenko Y.B., Wignall G.D., Talingting M.R., Munk P., Webber S.E. Small-angle neutron scattering study of onion-type micelles. Macromol. Chem. Phys. 2001;202:553–563. doi: 10.1002/1521-3935(20010201)202:4<553::AID-MACP553>3.0.CO;2-6. DOI

Podhájecká K., Stepanek M., Prochazka K., Brown W. Hybrid Polymeric Micelles with Hydrophobic Cores and Mixed Polyelectrolyte/Nonelectrolyte Shells in Aqueous Media. 2. Studies of the Shell Behavior. Langmuir. 2001;17:4245–4250. doi: 10.1021/la010247p. DOI

Stepanek M., Podhájecká K., Tesařová E., Prochazka K., Tuzar Z., Brown W. Hybrid Polymeric Micelles with Hydrophobic Cores and Mixed Polyelectrolyte/Nonelectrolyte Shells in Aqueous Media. 1. Preparation and Basic Characterization. Langmuir. 2001;17:4240–4244. doi: 10.1021/la010246x. DOI

Viduna D., Limpouchová Z., Procházka K. Monte Carlo simulation of polymer brushes in narrow pores. J. Chem. Phys. 2001;115:7309–7318. doi: 10.1063/1.1405444. DOI

Tsitsilianis C., Voulgaris D., Štěpánek M., Podhájecká K., Procházka K., Tuzar Z., Brown W. Polystyrene/Poly(2-vinylpyridine) Heteroarm Star Copolymer Micelles in Aqueous Media and Onion Type Micelles Stabilized by Diblock Copolymers. Langmuir. 2000;16:6868–6876. doi: 10.1021/la000176e. DOI

Borovinskii A.L., Khokhlov A.R. Microphase Separation in a Mixture of Block Copolymers in the Strong Segregation Regime. Macromolecules. 1998;31:1180–1187. doi: 10.1021/ma970622d. DOI

Martin T.J., Prochazka K., Munk P., Webber S.E. pH-dependent micellization of poly(2-vinylpyridine)-block-poly(ethylene oxide) Macromolecules. 1996;29:6071–6073. doi: 10.1021/ma960629f. DOI

Prochazka K., Martin T.J., Webber A.S.E., Munk P. Onion-Type Micelles in Aqueous Media. Macromolecules. 1996;29:6526–6530. doi: 10.1021/ma9606317. DOI

Santo K.P., Neimark A.V. Dissipative particle dynamics simulations in colloid and Interface science: A review. Adv. Colloid Interface Sci. 2021;298:102545. doi: 10.1016/j.cis.2021.102545. PubMed DOI

Walden D.M., Bundey Y., Jagarapu A., Antontsev V., Chakravarty K., Varshney J. Molecular Simulation and Statistical Learning Methods toward Predicting Drug–Polymer Amorphous Solid Dispersion Miscibility, Stability, and Formulation Design. Molecules. 2021;26:182. doi: 10.3390/molecules26010182. PubMed DOI PMC

Bunker A., Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front. Mol. Biosci. 2020;7:604770. doi: 10.3389/fmolb.2020.604770. PubMed DOI PMC

Landsgesell J., Nová L., Rud O., Uhlík F., Sean D., Hebbeker P., Holm C., Košovan P. Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. Soft Matter. 2019;15:1155–1185. doi: 10.1039/C8SM02085J. PubMed DOI

Lin P., Colina C.M. Molecular simulation of protein–polymer conjugates. Curr. Opin. Chem. Eng. 2019;23:44–50. doi: 10.1016/j.coche.2019.02.006. DOI

Peter C., Kremer K. Multiscale simulation of soft matter systems—From the atomistic to the coarse-grained level and back. Soft Matter. 2009;5:4357–4366. doi: 10.1039/b912027k. DOI

Zhang W., Vargas-Lara F., Orski S.V., Beers K.L., Douglas J.F. Modeling short-chain branched polyethylenes in dilute solution under variable solvent quality conditions: Basic configurational properties. Polymer. 2021;217:123429. doi: 10.1016/j.polymer.2021.123429. DOI

Fanova A., Šindelka K., Uchman M., Limpouchová Z., Filippov S.K., Pispas S., Procházka K., Štěpánek M. Coassembly of Poly(N-isopropylacrylamide) with Dodecyl and Carboxyl Terminal Groups with Cationic Surfactant: Critical Comparison of Experimental and Simulation Data. Macromolecules. 2018;51:7295–7308. doi: 10.1021/acs.macromol.8b01161. DOI

Ahn J., Chang T., Wang X., Limpouchová Z., Procházka K. Influence of the Chain Architecture and the Presence of End-Groups or Branching Units Chemically Different from Repeating Structural Units on the Critical Adsorption Point in Liquid Chromatography. Macromolecules. 2017;50:8720–8730. doi: 10.1021/acs.macromol.7b01786. DOI

Košovan P., Uhlík F., Kuldová J., Štěpánek M., Limpouchová Z., Procházka K., Benda A., Humpolíčková J., Hof M. Monte Carlo simulation of fluorescence correlation spectroscopy data. Collect. Czechoslov. Chem. Commun. 2011;76:207–222. doi: 10.1135/cccc2009526. DOI

Stepanek M., Krijtova K., Limpouchova Z., Prochazka K., Teng Y., Munk P., Webber S. Solubilization and release of hydrophobic compounds from block copolymer micelles. II. Release of pyrene from polyelectrolyte micelles under equilibrium conditions. Acta Polym. 1998;49:103–107. doi: 10.1002/(SICI)1521-4044(199802)49:2/3<103::AID-APOL103>3.0.CO;2-8. DOI

El Sayed D.S., Abdelrehim E.-S.M. Computational details of molecular structure, spectroscopic properties, topological studies and SARS-Cov-2 enzyme molecular docking simulation of substituted triazolo pyrimidine thione heterocycles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021;261:120006. doi: 10.1016/j.saa.2021.120006. PubMed DOI PMC

Pan X., Yang J., Van R., Epifanovsky E., Ho J., Huang J., Pu J., Mei Y., Nam K., Shao Y. Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and Enzyme Reactions. J. Chem. Theory Comput. 2021;17:5745–5758. doi: 10.1021/acs.jctc.1c00565. PubMed DOI PMC

Sheng X., Liu Y. QM/MM Study of the Reaction Mechanism of the Carboxyl Transferase Domain of Pyruvate Carboxylase from Staphylococcus aureus. Biochemistry. 2014;53:4455–4466. doi: 10.1021/bi500020r. PubMed DOI

Timr Š., Bondar A., Cwiklik L., Štefl M., Hof M., Vazdar M., Lazar J., Jungwirth P. Accurate Determination of the Orientational Distribution of a Fluorescent Molecule in a Phospholipid Membrane. J. Phys. Chem. B. 2013;118:855–863. doi: 10.1021/jp4067026. PubMed DOI

Baschnagel J., Binder K., Doruker P., Gusev A.A., Hahn O., Kremer K., Mattice W.L., Müller-Plathe F., Murat M., Paul W., et al. Bridging the Gap Between Atomistic and Coarse-Grained Models of Polymers: Status and Perspectives. Viscoelasticity At. Models Stat. Chem. 2007;152:41–156. doi: 10.1007/3-540-46778-5_2. DOI

Cerdà J.J., Holm C., Kremer K. Novel Simulation Approaches for Polymeric and Soft Matter Systems. Macromol. Theory Simul. 2011;20:444–445. doi: 10.1002/mats.201100072. DOI

Groot R.D., Rabone K.L. Mesoscopic Simulation of Cell Membrane Damage, Morphology Change and Rupture by Nonionic Surfactants. Biophys. J. 2001;81:725–736. doi: 10.1016/S0006-3495(01)75737-2. PubMed DOI PMC

Groot R.D., Warren P.B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997;107:4423–4435. doi: 10.1063/1.474784. DOI

Espanol P., Warren P.B. Statistical Mechanics of Dissipative Particle Dynamics. Eur. Lett. 1995;30:191–196. doi: 10.1209/0295-5075/30/4/001. DOI

Hoogerbrugge P.J., Koelman J.M.V.A. Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. EPL Europhys. Lett. 1992;19:155–160. doi: 10.1209/0295-5075/19/3/001. DOI

Lísal M., Šindelka K., Suchá L., Limpouchová Z., Procházka K. Dissipative particle dynamics simulations of polyelectrolyte self-assemblies. Methods with explicit electrostatics. Polym. Sci. Ser. C. 2017;59:77–101. doi: 10.1134/S1811238217010052. DOI

Prochazka K., Šindelka K., Wang X., Limpouchova Z., Lísal M. Self-assembly and co-assembly of block polyelectrolytes in aqueous solutions. Dissipative particle dynamics with explicit electrostatics. Mol. Phys. 2016;114:3077–3092. doi: 10.1080/00268976.2016.1225130. DOI

Weiss H., Deglmann P., Veld P.J.i., Cetinkaya M., Schreiner E. Multiscale Materials Modeling in an Industrial Environment. Annu. Rev. Chem. Biomol. Eng. 2016;7:65–86. doi: 10.1146/annurev-chembioeng-080615-033615. PubMed DOI

Smiatek J., Holm C. Handbook of Materials Modeling: Methods: Theory and Modeling. Springer; Cham, Switzerland: 2020. From the Atomistic to the Macromolecular Scale: Distinct Simulation Approaches for Polyelectrolyte Solutions; pp. 1381–1395.

Holm C., Ertl T., Schmauder S., Kästner J., Gross J. Particle methods in natural science and engineering. Eur. Phys. J. Spéc. Top. 2019;227:1493–1499. doi: 10.1140/epjst/e2019-900008-2. DOI

Site L.D., Holm C., van der Vegt N.F.A. Multiscale Approaches and Perspectives to Modeling Aqueous Electrolytes and Polyelectrolytes. In: Kirchner B., Vrabec J., editors. Multiscale Molecular Methods in Applied Chemistry. Springer; Berlin, Germany: 2012. pp. 251–294. PubMed

Slater G.W., Holm C., Chubynsky M.V., De Haan H.W., Dubé A., Grass K., Hickey O.A., Kingsburry C., Sean D., Shendruk T.N., et al. Modeling the separation of macromolecules: A review of current computer simulation methods. Electrophoresis. 2009;30:792–818. doi: 10.1002/elps.200800673. PubMed DOI

Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039. DOI

Seaton M.A., Anderson R.L., Metz S., Smith W.R. DL_MESO: Highly scalable mesoscale simulations. Mol. Simul. 2013;39:796–821. doi: 10.1080/08927022.2013.772297. DOI

Weik F., Weeber R., Szuttor K., Breitsprecher K., De Graaf J., Kuron M., Landsgesell J., Menke H., Sean D., Holm C. ESPResSo 4.0—An extensible software package for simulating soft matter systems. Eur. Phys. J. Spéc. Top. 2019;227:1789–1816. doi: 10.1140/epjst/e2019-800186-9. DOI

Anderson J.A., Glaser J., Glotzer S.C. HOOMD-blue: A Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations. Comput. Mater. Sci. 2020;173:109363. doi: 10.1016/j.commatsci.2019.109363. DOI

Grønbech-Jensen N. Complete set of stochastic Verlet-type thermostats for correct Langevin simulations. Mol. Phys. 2019;118:e1662506. doi: 10.1080/00268976.2019.1662506. DOI

Larentzos J.P., Brennan J.K., Moore J.D., Lísal M., Mattson W.D. Parallel implementation of isothermal and isoenergetic Dissipative Particle Dynamics using Shardlow-like splitting algorithms. Comput. Phys. Commun. 2014;185:1987–1998. doi: 10.1016/j.cpc.2014.03.029. DOI

Svoboda M., Serratos M.G.J., Kowalski A.J., Cooke M., Mendoza C., Lísal M. Structural properties of cationic surfactant-fatty alcohol bilayers: Insights from dissipative particle dynamics. Soft Matter. 2021;17:9967–9984. doi: 10.1039/D1SM00850A. PubMed DOI

Shardlow T. Splitting for Dissipative Particle Dynamics. SIAM J. Sci. Comput. 2003;24:1267–1282. doi: 10.1137/S1064827501392879. DOI

Symeonidis V., Karniadakis G.E., Caswell B. Dissipative Particle Dynamics Simulations of Polymer Chains: Scaling Laws and Shearing Response Compared to DNA Experiments. Phys. Rev. Lett. 2005;95:076001. doi: 10.1103/PhysRevLett.95.076001. PubMed DOI

Lee M.-T., Vishnyakov A., Neimark A.V. Calculations of Critical Micelle Concentration by Dissipative Particle Dynamics Simulations: The Role of Chain Rigidity. J. Phys. Chem. B. 2013;117:10304–10310. doi: 10.1021/jp4042028. PubMed DOI

Groot R.D. Mesoscopic Simulation of Polymer−Surfactant Aggregation. Langmuir. 2000;16:7493–7502. doi: 10.1021/la000010d. DOI

Posel Z., Rousseau B., Lísal M. Scaling behaviour of different polymer models in dissipative particle dynamics of unentangled melts. Mol. Simul. 2014;40:1274–1289. doi: 10.1080/08927022.2013.869803. DOI

Lee M.-T., Vishnyakov A., Neimark A.V. Coarse-grained model of water diffusion and proton conductivity in hydrated polyelectrolyte membrane. J. Chem. Phys. 2016;144:014902. doi: 10.1063/1.4938271. PubMed DOI

Anderson R.L., Bray D.J., Del Regno A., Seaton M.A., Ferrante A.S., Warren P.B. Micelle Formation in Alkyl Sulfate Surfactants Using Dissipative Particle Dynamics. J. Chem. Theory Comput. 2018;14:2633–2643. doi: 10.1021/acs.jctc.8b00075. PubMed DOI

Moreno N., Nunes S., Calo V.M. Consistent model reduction of polymer chains in solution in dissipative particle dynamics: Model description. Comput. Phys. Commun. 2015;196:255–266. doi: 10.1016/j.cpc.2015.06.012. DOI

Zhuang Z.L., Cai C.H., Jiang T., Lin J.P., Yang C.Y. Self-assembly behavior of rod-coil-rod polypeptide block copolymers. Polymer. 2014;55:602–610. doi: 10.1016/j.polymer.2013.12.016. DOI

Cai C., Wang L., Lin J., Zhang X. Morphology Transformation of Hybrid Micelles Self-Assembled from Rod–Coil Block Copolymer and Nanoparticles. Langmuir. 2012;28:4515–4524. doi: 10.1021/la204941w. PubMed DOI

Lavagnini E., Cook J.L., Warren P.B., Hunter C.A. Translation of Chemical Structure into Dissipative Particle Dynamics Parameters for Simulation of Surfactant Self-Assembly. J. Phys. Chem. B. 2021;125:3942–3952. doi: 10.1021/acs.jpcb.1c00480. PubMed DOI PMC

Kempfer K., Devémy J., Dequidt A., Couty M., Malfreyt P. Realistic Coarse-Grain Model of cis-1,4-Polybutadiene: From Chemistry to Rheology. Macromolecules. 2019;52:2736–2747. doi: 10.1021/acs.macromol.8b02750. DOI

Anderson R.L., Bray D., Ferrante A., Noro M.G., Stott I.P., Warren P.B. Dissipative particle dynamics: Systematic parametrization using water-octanol partition coefficients. J. Chem. Phys. 2017;147:094503. doi: 10.1063/1.4992111. PubMed DOI

Trément S., Schnell B., Petitjean L., Couty M., Rousseau B. Conservative and dissipative force field for simulation of coarse-grained alkane molecules: A bottom-up approach. J. Chem. Phys. 2014;140:134113. doi: 10.1063/1.4870394. PubMed DOI

Milano G., Muller-Plathe F. Mapping atomistic simulations to mesoscopic models: A systematic coarse-graining procedure for vinyl polymer chains. J. Phys. Chem. B. 2005;109:18609–18619. doi: 10.1021/jp0523571. PubMed DOI

Posel Z., Limpouchova Z., Sindelka K., Lisal M., Prochazka K. Dissipative Particle Dynamics Study of the pH-Dependent Behavior of Poly(2-vinylpyridine)-block-poly(ethylene oxide) Diblock Copolymer in Aqueous Buffers. Macromolecules. 2014;47:2503–2514. doi: 10.1021/ma402293c. DOI

Mao R., Lee M.-T., Vishnyakov A., Neimark A.V. Modeling Aggregation of Ionic Surfactants Using a Smeared Charge Approximation in Dissipative Particle Dynamics Simulations. J. Phys. Chem. B. 2015;119:11673–11683. doi: 10.1021/acs.jpcb.5b05630. PubMed DOI

Füchslin R.M., Fellermann H., Eriksson A., Ziock H.-J. Coarse graining and scaling in dissipative particle dynamics. J. Chem. Phys. 2009;130:214102. doi: 10.1063/1.3143976. PubMed DOI

Lauriello N., Kondracki J., Buffo A., Boccardo G., Bouaifi M., Lisal M., Marchisio D. Simulation of high Schmidt number fluids with dissipative particle dynamics: Parameter identification and robust viscosity evaluation. Phys. Fluids. 2021;33:073106. doi: 10.1063/5.0055344. DOI

Jakobsen A.F., Mouritsen O.G., Weiss M. Close-up view of the modifications of fluid membranes due to phospholipase A2. J. Physics: Condens. Matter. 2005;17:S4015–S4024. doi: 10.1088/0953-8984/17/47/025. PubMed DOI

Groot R.D. Applications of dissipative particle dynamics. In: Karttunen M., Vattulainen I., Lukkarinen A., editors. Novel Methods in Soft Matter Simulations. Springer; Berlin, Germany: 2004. pp. 5–38.

Rubinstein M., Colby R.H. Polymer Physics. Oxford University; New York, NY, USA: 2003.

Grosberg A.Y., Khokhlov A.R. Statistical Physics of Macromolecules. AIP Press; New York, NY, USA: 1994.

Deng M., Li Z., Borodin O., Karniadakis G.E. cDPD: A new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale. J. Chem. Phys. 2016;145:144109. doi: 10.1063/1.4964628. PubMed DOI

Gavrilov A.A., Chertovich A., Kramarenko E.Y. Dissipative particle dynamics for systems with high density of charges: Implementation of electrostatic interactions. J. Chem. Phys. 2016;145:174101. doi: 10.1063/1.4966149. PubMed DOI

Terrón-Mejía K.A., Lopez-Rendon R., Goicochea A.G. Electrostatics in dissipative particle dynamics using Ewald sums with point charges. J. Phys. Condens. Matter. 2016;28:425101. doi: 10.1088/0953-8984/28/42/425101. PubMed DOI

Warren P.B., Vlasov A. Screening properties of four mesoscale smoothed charge models, with application to dissipative particle dynamics. J. Chem. Phys. 2014;140:84904. doi: 10.1063/1.4866375. PubMed DOI

Maurel G., Schnell B., Goujon F., Couty M., Malfreyt P. Multiscale Modeling Approach toward the Prediction of Viscoelastic Properties of Polymers. J. Chem. Theory Comput. 2012;8:4570–4579. doi: 10.1021/ct300582y. PubMed DOI

Li Z., Dormidontova E.E. Kinetics of Diblock Copolymer Micellization by Dissipative Particle Dynamics. Macromolecules. 2010;43:3521–3531. doi: 10.1021/ma902860j. DOI

Lahmar F., Tzoumanekas C., Theodorou D.N., Rousseau B. Onset of Entanglements Revisited. Dynamical Analysis. Macromolecules. 2009;42:7485–7494. doi: 10.1021/ma9011329. DOI

Holleran S.P., Larson R.G. Using spring repulsions to model entanglement interactions in Brownian dynamics simulations of bead–spring chains. Rheol. Acta. 2008;47:3–17. doi: 10.1007/s00397-007-0189-4. DOI

Sirchabesan M., Giasson S. Mesoscale Simulations of the Behavior of Charged Polymer Brushes under Normal Compression and Lateral Shear Forces. Langmuir. 2007;23:9713–9721. doi: 10.1021/la7009226. PubMed DOI

Carrillo-Tripp M., Saint-Martin H., Ortega-Blake I. A comparative study of the hydration of Na+ and K+ with refined polarizable model potentials. J. Chem. Phys. 2003;118:7062–7073. doi: 10.1063/1.1559673. DOI

Pan G., Manke C.W. Developments toward simulation of entangled polymer melts by dissipative particle dynamics (dpd) Int. J. Mod. Phys. B. 2003;17:231–235. doi: 10.1142/S0217979203017400. DOI

Kumar S., Larson R.G. Brownian dynamics simulations of flexible polymers with spring–spring repulsions. J. Chem. Phys. 2001;114:6937–6941. doi: 10.1063/1.1358860. DOI

Padding J.J., Briels W.J. Uncrossability constraints in mesoscopic polymer melt simulations: Non-Rouse behavior of C120H242. J. Chem. Phys. 2001;115:2846–2859. doi: 10.1063/1.1385162. DOI

Reith D., Meyer H., Müller-Plathe F. Mapping Atomistic to Coarse-Grained Polymer Models Using Automatic Simplex Optimization To Fit Structural Properties. Macromolecules. 2001;34:2335–2345. doi: 10.1021/ma001499k. DOI

Kacar G. Thermodynamic stability of ibuprofen loaded poloxamer micelles. Chem. Phys. 2020;533:110713. doi: 10.1016/j.chemphys.2020.110713. DOI

Kacar G. Molecular understanding of interactions, structure, and drug encapsulation efficiency of Pluronic micelles from dissipative particle dynamics simulations. Colloid Polym. Sci. 2019;297:1037–1051. doi: 10.1007/s00396-019-04535-0. DOI

Kaçar G., Peters E.A.J.F., De With G. A generalized method for parameterization of dissipative particle dynamics for variable bead volumes. EPL Europhys. Lett. 2013;102:40009. doi: 10.1209/0295-5075/102/40009. DOI

Backer J.A., Lowe C.P., Hoefsloot H.C.J., Iedema P.D. Combined length scales in dissipative particle dynamics. J. Chem. Phys. 2005;123:114905. doi: 10.1063/1.2013208. PubMed DOI

Ibergay C., Malfreyt P., Tildesley D.J. Electrostatic Interactions in Dissipative Particle Dynamics: Toward a Mesoscale Modeling of the Polyelectrolyte Brushes. J. Chem. Theory Comput. 2009;5:3245–3259. doi: 10.1021/ct900296s. PubMed DOI

González-Melchor M., Mayoral E., Velázquez M.E., Alejandre J. Electrostatic interactions in dissipative particle dynamics using the Ewald sums. J. Chem. Phys. 2006;125:224107. doi: 10.1063/1.2400223. PubMed DOI

Groot R.D. Electrostatic interactions in dissipative particle dynamics-simulation of polyelectrolytes and anionic surfactants. J. Chem. Phys. 2003;118:11265–11277. doi: 10.1063/1.1574800. DOI

Sirk T.W., Slizoberg Y.R., Brennan J.K., Lisal M., Andzelm J.W. An enhanced entangled polymer model for dissipative particle dynamics. J. Chem. Phys. 2012;136:134903. doi: 10.1063/1.3698476. PubMed DOI

Tzoumanekas C., Lahmar F., Rousseau B., Theodorou D.N. Onset of Entanglements Revisited. Topological Analysis. Macromolecules. 2009;42:7474–7484. doi: 10.1021/ma901131c. DOI

Meneses-Juárez E., Márquez-Beltrán C., Rivas-Silva J.F., Pal U., González-Melchor M. The structure and interaction mechanism of a polyelectrolyte complex: A dissipative particle dynamics study. Soft Matter. 2015;11:5889–5897. doi: 10.1039/C5SM00911A. PubMed DOI

Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI

Pergushov D.V., Zezin A.A., Zezin A.B., Muller A.H.E. Advanced Functional Structures Based on Interpolyelectrolyte Complexes. In: Muller M., editor. Polyelectrolyte Complexes in the Dispersed and Solid State I: Principles and Theory. Springer; Berlin/Heidelberg, Germany: 2014. pp. 173–225.

Pergushov D.V., Borisov O.V., Zezin A.B., Muller A.H.E. Self Organized Nanostructures of Amphiphilic Block Copolymers I. Vol. 241. Springer; Berlin/Heidelberg, Germany: 2011. Interpolyelectrolyte Complexes Based on Polyionic Species of Branched Topology; pp. 131–161.

Pergushov D.V., Remizova E.V., Gradzielski M., Lindner P., Feldthusen J., Zezin A.B., Müller A.H., Kabanov V.A. Micelles of polyisobutylene-block-poly(methacrylic acid) diblock copolymers and their water-soluble interpolyelectrolyte complexes formed with quaternized poly(4-vinylpyridine) Polymer. 2004;45:367–378. doi: 10.1016/j.polymer.2003.10.086. DOI

Pergushov D.V., Remizova E.V., Feldthusen J., Zezin A.B., Müller A.H.E., Kabanov V.A. Novel Water-Soluble Micellar Interpolyelectrolyte Complexes. J. Phys. Chem. B. 2003;107:8093–8096. doi: 10.1021/jp027526l. DOI

Gavrilov A.A. Dissipative particle dynamics for systems with polar species: Interactions in dielectric media. J. Chem. Phys. 2020;152:164101. doi: 10.1063/5.0002475. PubMed DOI

Rumyantsev A.M., Gavrilov A.A., Kramarenko E.Y. Electrostatically Stabilized Microphase Separation in Blends of Oppositely Charged Polyelectrolytes. Macromolecules. 2019;52:7167–7174. doi: 10.1021/acs.macromol.9b00883. DOI

Medina S., Zhou J., Wang Z.-G., Schmid F. An efficient dissipative particle dynamics-based algorithm for simulating electrolyte solutions. J. Chem. Phys. 2015;142:24103. doi: 10.1063/1.4905102. PubMed DOI

Nair N., Park M., Handgraaf J.-W., Cassiola F.M. Coarse-Grained Simulations of Polymer-Grafted Nanoparticles: Structural Stability and Interfacial Behavior. J. Phys. Chem. B. 2016;120:9523–9539. doi: 10.1021/acs.jpcb.6b06199. PubMed DOI

Wang X., Gao J., Wang Z., Xu J., Li C., Sun S., Hu S. Dissipative particle dynamics simulation on the self-assembly and disassembly of pH-sensitive polymeric micelle with coating repair agent. Chem. Phys. Lett. 2017;685:328–337. doi: 10.1016/j.cplett.2017.07.070. DOI

Guo X.D., Zhang L.J., Wu Z.M., Qian Y. Dissipative Particle Dynamics Studies on Microstructure of pH-Sensitive Micelles for Sustained Drug Delivery. Macromolecules. 2010;43:7839–7844. doi: 10.1021/ma101132n. DOI

Luo Z.L., Li Y., Wang B.B., Jiang J.W. pH-Sensitive Vesicles Formed by Amphiphilic Grafted Copolymers with Tunable Membrane Permeability for Drug Loading/Release: A Multiscale Simulation Study. Macromolecules. 2016;49:6084–6094. doi: 10.1021/acs.macromol.6b01211. DOI

Li N.K., Fuss W.H., Tang L., Gu R., Chilkoti A., Zauscher S., Yingling Y.G. Prediction of solvent-induced morphological changes of polyelectrolyte diblock copolymer micelles. Soft Matter. 2015;11:8236–8245. doi: 10.1039/C5SM01742D. PubMed DOI

Nie S., Zhang X., Gref R., Couvreur P., Qian Y., Zhang L. Multilamellar Nanoparticles Self-Assembled from Opposite Charged Blends: Insights from Mesoscopic Simulation. J. Phys. Chem. C. 2015;119:20649–20661. doi: 10.1021/acs.jpcc.5b03833. DOI

Lin W.J., Nie S.Y., Chen Q., Qian Y., Wen X.F., Zhang L.J. Structure-Property Relationship of pH-Sensitive (PCL)(2) (PDEA-b-PPEGMA)(2) Micelles: Experiment and DPD Simulation. Aiche J. 2014;60:3634–3646. doi: 10.1002/aic.14562. DOI

Nie S.Y., Sun Y., Lin W.J., Wu W.S., Guo X.D., Qian Y., Zhang L.J. Dissipative Particle Dynamics Studies of Doxorubicin-Loaded Micelles Assembled from Four-Arm Star Triblock Polymers 4AS-PCL-b-PDEAEMA-b-PPEGMA and their pH-Release Mechanism. J. Phys. Chem. B. 2013;117:13688–13697. doi: 10.1021/jp407529u. PubMed DOI

Rodríguez-Hidalgo M.D.R., Soto-Figueroa C., Vicente L. Mesoscopic study of salt-responsive polymeric micelles: Structural inversion mechanisms via sequential addition of inorganic salts. Soft Matter. 2013;9:5762–5770. doi: 10.1039/c3sm50387a. DOI

Luo Z.L., Jiang J.W. pH-sensitive drug loading/releasing in amphiphilic copolymer PAE-PEG: Integrating molecular dynamics and dissipative particle dynamics simulations. J. Control. Release. 2012;162:185–193. doi: 10.1016/j.jconrel.2012.06.027. PubMed DOI

Rodríguez-Hidalgo M.-D.-R., Soto-Figueroa C., Vicente L. Mesoscopic simulation of the drug release mechanism on the polymeric vehicle P(ST-DVB) in an acid environment. Soft Matter. 2011;7:8224–8230. doi: 10.1039/c1sm05667k. DOI

Pantano D.A., Moore P.B., Klein M.L., Discher D.E. Raft registration across bilayers in a molecularly detailed model. Soft Matter. 2011;7:8182–8191. doi: 10.1039/c1sm05490b. DOI

Zheng L.S., Yang Y.Q., Guo X.D., Sun Y., Qian Y., Zhang L.J. Mesoscopic simulations on the aggregation behavior of pH-responsive polymeric micelles for drug delivery. J. Colloid Interface Sci. 2011;363:114–121. doi: 10.1016/j.jcis.2011.07.040. PubMed DOI

Horsch M.A., Zhang Z., Iacovella C., Glotzer S.C. Hydrodynamics and microphase ordering in block copolymers: Are hydrodynamics required for ordered phases with periodicity in more than one dimension? J. Chem. Phys. 2004;121:11455–11462. doi: 10.1063/1.1814976. PubMed DOI

Groot R.D., Madden T.J., Tildesley D.J. On the role of hydrodynamic interactions in block copolymer microphase separation. J. Chem. Phys. 1999;110:9739–9749. doi: 10.1063/1.478939. DOI

Sweere A.J.M., Patham B., Sugur V., Handgraaf J. A Multiscale Approach for Estimating Permeability Properties of Polymers with Complex Aromatic Backbones: A Case Study on Diffusivity of Small Gas Molecules in Polyphenylene Ether. Macromol. Theory Simul. 2020;29:2000027. doi: 10.1002/mats.202000027. DOI

Zavadlav J., Marrink S.J., Praprotnik M. SWINGER: A clustering algorithm for concurrent coupling of atomistic and supramolecular liquids. Interface Focus. 2019;9:20180075. doi: 10.1098/rsfs.2018.0075. PubMed DOI PMC

Xu Z., Lin J., Zhang L., Wang L., Wang G., Tian X., Jiang T. Distinct Photovoltaic Performance of Hierarchical Nanostructures Self-Assembled from Multiblock Copolymers. ACS Appl. Mater. Interfaces. 2018;10:22552–22561. doi: 10.1021/acsami.8b04692. PubMed DOI

Muccioli L., D’Avino G., Berardi R., Orlandi S., Pizzirusso A., Ricci M., Roscioni O.M., Zannoni C. Supramolecular Organization of Functional Organic Materials in the Bulk and at Organic/Organic Interfaces: A Modeling and Computer Simulation Approach. In: Beljonne D., Cornil J., editors. Multiscale Modelling of Organic and Hybrid Photovoltaics. Springer; Berlin/Heidelberg, Germany: 2014. pp. 39–101. PubMed

Posocco P., Fermeglia M., Pricl S. Morphology prediction of block copolymers for drug delivery by mesoscale simulations. J. Mater. Chem. 2010;20:7742–7753. doi: 10.1039/c0jm01301c. DOI

Maly M., Posocco P., Pricl S., Fermeglia M. Self-Assembly of Nanoparticle Mixtures in Diblock Copolymers: Multiscale Molecular Modeling. Ind. Eng. Chem. Res. 2008;47:5023–5038. doi: 10.1021/ie071311m. DOI

Dünweg B. Computer simulations of the dynamics of polymer solutions. J. Comput. Mater. Des. 2007;14:259–264. doi: 10.1007/s10820-007-9074-9. DOI

Spaeth J.R., Kevrekidis I.G., Panagiotopoulos A.Z. A comparison of implicit- and explicit-solvent simulations of self-assembly in block copolymer and solute systems. J. Chem. Phys. 2011;134:164902. doi: 10.1063/1.3580293. PubMed DOI

Chen T., Hynninen A.-P., Prud’Homme R.K., Kevrekidis I.G., Panagiotopoulos A. Coarse-Grained Simulations of Rapid Assembly Kinetics for Polystyrene-b-poly(ethylene oxide) Copolymers in Aqueous Solutions. J. Phys. Chem. B. 2008;112:16357–16366. doi: 10.1021/jp805826a. PubMed DOI

Kumar V., Wang L., Riebe M., Tung H.H., Prud’homme R.K. Formulation and Stability of ltraconazole and Odanacatib Nanoparticles: Governing Physical Parameters. Mol. Pharm. 2009;6:1118–1124. doi: 10.1021/mp900002t. PubMed DOI

Jayasree K., Manna R.K., Banerjee D., Kumar P.B.S. Dynamics of a polyelectrolyte in simple shear flow. J. Chem. Phys. 2013;139:224902. doi: 10.1063/1.4837218. PubMed DOI

Cheng J., Vishnyakov A., Neimark A.V. Morphological Transformations in Polymer Brushes in Binary Mixtures: DPD Study. Langmuir. 2014;30:12932–12940. doi: 10.1021/la503520e. PubMed DOI

Santo K.P., Vishnyakov A., Kumar R., Neimark A.V. Elucidating the Effects of Metal Complexation on Morphological and Rheological Properties of Polymer Solutions by a Dissipative Particle Dynamics Model. Macromolecules. 2018;51:4987–5000. doi: 10.1021/acs.macromol.8b00493. DOI

Šindelka K., Limpouchová Z., Procházka K. Computer study of the solubilization of polymer chains in polyelectrolyte complex cores of polymeric nanoparticles in aqueous media. Phys. Chem. Chem. Phys. 2018;20:29876–29888. doi: 10.1039/C8CP05907A. PubMed DOI

Šindelka K., Limpouchová Z., Štěpánek M., Procházka K. Stabilization of coated inorganic nanoparticles by amphiphilic copolymers in aqueous media. Dissipative particle dynamics study. Colloid Polym. Sci. 2017;295:1429–1441. doi: 10.1007/s00396-017-4090-0. DOI

Aydin F., Chu X., Uppaladadium G., Devore D., Goyal R., Murthy N.S., Zhang Z., Kohn J., Dutt M. Self-Assembly and Critical Aggregation Concentration Measurements of ABA Triblock Copolymers with Varying B Block Types: Model Development, Prediction, and Validation. J. Phys. Chem. B. 2016;120:3666–3676. doi: 10.1021/acs.jpcb.5b12594. PubMed DOI PMC

Ghelichi M., Qazvini N.T. Self-organization of hydrophobic-capped triblock copolymers with a polyelectrolyte midblock: A coarse-grained molecular dynamics simulation study. Soft Matter. 2016;12:4611–4620. doi: 10.1039/C6SM00414H. PubMed DOI

Guo H., Qiu X., Zhou J. Self-assembled core-shell and Janus microphase separated structures of polymer blends in aqueous solution. J. Chem. Phys. 2013;139:084907. doi: 10.1063/1.4817003. PubMed DOI

Huang J.-H., Fan Z.-X., Luo M.-B. Simulation study on the structure of rod-coil-rod triblock copolymer and nanoparticle mixture within slit. J. Chem. Phys. 2013;139:204904. doi: 10.1063/1.4833135. PubMed DOI

Huang J.-H., Fan Z.-X., Ma Z.-X. Dissipative particle dynamics simulations on self-assembly of rod-coil-rod triblock copolymers in a rod-selective solvent. J. Chem. Phys. 2013;139:64905. doi: 10.1063/1.4818417. PubMed DOI

Tan H., Li S., Li K., Yu C., Lu Z., Zhou Y. Shape Transformations of Vesicles Self-Assembled from Amphiphilic Hyperbranched Multiarm Copolymers via Simulation. Langmuir. 2018;35:6929–6938. doi: 10.1021/acs.langmuir.8b02206. PubMed DOI

Tan H., Yu C., Lu Z., Zhou Y., Yan D. A dissipative particle dynamics simulation study on phase diagrams for the self-assembly of amphiphilic hyperbranched multiarm copolymers in various solvents. Soft Matter. 2017;13:6178–6188. doi: 10.1039/C7SM01170A. PubMed DOI

Tan H., Wang W., Yu C., Zhou Y., Lu Z., Yan D. Dissipative particle dynamics simulation study on self-assembly of amphiphilic hyperbranched multiarm copolymers with different degrees of branching. Soft Matter. 2015;11:8460–8470. doi: 10.1039/C5SM01495F. PubMed DOI

Nikkhah S.J., Turunen E., Lepo A., Ala-Nissila T., Sammalkorpi M. Multicore Assemblies from Three-Component Linear Homo-Copolymer Systems: A Coarse-Grained Modeling Study. Polymers. 2021;13:2193. doi: 10.3390/polym13132193. PubMed DOI PMC

Buglakov A.I., Larin D.E., Vasilevskaya V.V. Self-assembly in Solutions of Amphiphilic Homopolymers: Computer Modeling and Analytical Theory. Macromolecules. 2020;53:4783–4795. doi: 10.1021/acs.macromol.0c00572. DOI

Gong M., Yu Q., Ma S., Luo F., Wang R., Chen D. Self-Assembly Behavior of Triphenylene-Based Side-Chain Discotic Liquid Crystalline Polymers. Macromolecules. 2017;50:5556–5564. doi: 10.1021/acs.macromol.7b00655. DOI

Ma S., Hu Y., Wang R. Amphiphilic Block Copolymer Aided Design of Hybrid Assemblies of Nanoparticles: Nanowire, Nanoring, and Nanocluster. Macromolecules. 2016;49:3535–3541. doi: 10.1021/acs.macromol.5b02778. DOI

Ma S., Hu Y., Wang R. Self-Assembly of Polymer Tethered Molecular Nanoparticle Shape Amphiphiles in Selective Solvents. Macromolecules. 2015;48:3112–3120. doi: 10.1021/ma5026219. DOI

Horsch M.A., Zhang Z., Glotzer S.C. Self-Assembly of Laterally-Tethered Nanorods. Nano Lett. 2006;6:2406–2413. doi: 10.1021/nl0614415. PubMed DOI

Glotzer S.C., Horsch M.A., Iacovella C., Zhang Z., Chan E.R., Zhang X. Self-assembly of anisotropic tethered nanoparticle shape amphiphiles. Curr. Opin. Colloid Interface Sci. 2005;10:287–295. doi: 10.1016/j.cocis.2005.09.011. DOI

Horsch M.A., Zhang Z., Glotzer S.C. Self-Assembly of Polymer-Tethered Nanorods. Phys. Rev. Lett. 2005;95:056105. doi: 10.1103/PhysRevLett.95.056105. PubMed DOI

Glotzer S.C. Some assembly required. Science. 2004;306:419–420. doi: 10.1126/science.1099988. PubMed DOI

Zhang Z., Horsch M.A., Lamm M.H., Glotzer S.C. Tethered Nano Building Blocks: Toward a Conceptual Framework for Nanoparticle Self-Assembly. Nano Lett. 2003;3:1341–1346. doi: 10.1021/nl034454g. DOI

Yang C., Yin L., Yuan C., Liu W., Guo J., Shuttleworth P.S., Yue H., Lin W. DPD simulations and experimental study on reduction-sensitive polymeric micelles self-assembled from PCL-SS-PPEGMA for doxorubicin controlled release. Colloids Surfaces B Biointerfaces. 2021;204:111797. doi: 10.1016/j.colsurfb.2021.111797. PubMed DOI

Megy S., Aguero S., da Costa D., Lamrayah M., Berthet M., Primard C., Verrier B., Terreux R. Molecular Dynamics Studies of Poly(Lactic Acid) Nanoparticles and Their Interactions with Vitamin E and TLR Agonists Pam1CSK4 and Pam3CSK4. Nanomaterials. 2020;10:2209. doi: 10.3390/nano10112209. PubMed DOI PMC

Yang C., Yuan C., Liu W., Guo J., Feng D., Yin X., Lin W., Shuttleworth P.S., Yue H. DPD studies on mixed micelles self-assembled from MPEG-PDEAEMA and MPEG-PCL for controlled doxorubicin release. Colloids Surf. B. 2019;178:56–65. doi: 10.1016/j.colsurfb.2019.02.043. PubMed DOI

Min W., Zhao D., Quan X., Sun D., Li L., Zhou J. Computer simulations on the pH-sensitive tri-block copolymer containing zwitterionic sulfobetaine as a novel anti-cancer drug carrier. Colloids Surf. B Biointerfaces. 2017;152:260–268. doi: 10.1016/j.colsurfb.2017.01.033. PubMed DOI

Chen Z., Huo J., Hao L., Zhou J. Multiscale modeling and simulations of responsive polymers. Curr. Opin. Chem. Eng. 2019;23:21–33. doi: 10.1016/j.coche.2019.02.004. DOI

Zhu Q., Scott T.R., Tree D.R. Using reactive dissipative particle dynamics to understand local shape manipulation of polymer vesicles. Soft Matter. 2020;17:24–39. doi: 10.1039/D0SM01654C. PubMed DOI

Donev A., Yang C.-Y., Kim C. Efficient reactive Brownian dynamics. J. Chem. Phys. 2018;148:034103. doi: 10.1063/1.5009464. PubMed DOI

Wright D.B., Ramirez-Hernandez A., Touve M., Carlini A.S., Thompson M.P., Patterson J.P., De Pablo J.J., Gianneschi N.C. Enzyme-Induced Kinetic Control of Peptide–Polymer Micelle Morphology. ACS Macro Lett. 2019;8:676–681. doi: 10.1021/acsmacrolett.8b00887. PubMed DOI

Gumus B., Herrera-Alonso M., Ramírez-Hernández A. Kinetically-arrested single-polymer nanostructures from amphiphilic mikto-grafted bottlebrushes in solution: A simulation study. Soft Matter. 2020;16:4969–4979. doi: 10.1039/D0SM00771D. PubMed DOI

Šindelka K., Limpouchová Z., Procházka K. Solubilization of Charged Porphyrins in Interpolyelectrolyte Complexes: A Computer Study. Polymers. 2021;13:502. doi: 10.3390/polym13040502. PubMed DOI PMC

Kubát P., Henke P., Berzediová V., Štěpánek M., Lang K., Mosinger J. Nanoparticles with Embedded Porphyrin Photosensitizers for Photooxidation Reactions and Continuous Oxygen Sensing. ACS Appl. Mater. Interfaces. 2017;9:36229–36238. doi: 10.1021/acsami.7b12009. PubMed DOI

Procházková K., Zelinger Z., Lang K., Kubát P. meso-Tetratolylporphyrins substituted by pyridinium groups: Aggregation, photophysical properties and complexation with DNA. J. Phys. Org. Chem. 2004;17:890–897. doi: 10.1002/poc.783. DOI

Kubát P., Lang K., Procházková K., Anzenbacher P. Self-Aggregates of Cationic meso-Tetratolylporphyrins in Aqueous Solutions. Langmuir. 2003;19:422–428. doi: 10.1021/la026183f. DOI

Raya R.K., Štěpánek M., Limpouchová Z., Procházka K., Svoboda M., Lísal M., Pavlova E., Skandalis A., Pispas S. Onion Micelles with an Interpolyelectrolyte Complex Middle Layer: Experimental Motivation and Computer Study. Macromolecules. 2020;53:6780–6795. doi: 10.1021/acs.macromol.0c00560. DOI

Xu J., Wang K., Liang R., Yang Y., Zhou H., Xie X., Zhu J. Structural Transformation of Diblock Copolymer/Homopolymer Assemblies by Tuning Cylindrical Confinement and Interfacial Interactions. Langmuir. 2015;31:12354–12361. doi: 10.1021/acs.langmuir.5b03146. PubMed DOI

Dobriyal P., Xiang H., Kazuyuki M., Chen J.-T., Jinnai H., Russell T.P. Cylindrically Confined Diblock Copolymers. Macromolecules. 2009;42:9082–9088. doi: 10.1021/ma901730a. DOI

Tang C., Bang J., Stein G., Fredrickson G.H., Hawker C.J., Kramer E.J., Sprung M., Wang J. Square Packing and Structural Arrangement of ABC Triblock Copolymer Spheres in Thin Films. Macromolecules. 2008;41:4328–4339. doi: 10.1021/ma800207n. DOI

Arsenault A.C., Rider D.A., Tétreault N., Chen J.I.-L., Coombs N., Ozin G.A., Manners I. Block Copolymers under Periodic, Strong Three-Dimensional Confinement. J. Am. Chem. Soc. 2005;127:9954–9955. doi: 10.1021/ja052483i. PubMed DOI

Ludwigs S., Schmidt K., Stafford C.M., Amis E.J., Fasolka M.J., Karim A., Magerle R., Krausch G. Combinatorial Mapping of the Phase Behavior of ABC Triblock Terpolymers in Thin Films: Experiments. Macromolecules. 2005;38:1850–1858. doi: 10.1021/ma049048d. DOI

Yabu H., Higuchi T., Jinnai H. Frustrated phases: Polymeric self-assemblies in a 3D confinement. Soft Matter. 2014;10:2919–2931. doi: 10.1039/c3sm52821a. PubMed DOI

Yang Y.Z., Qiu F., Zhang H.D., Yang Y.L. Cylindrical phase of diblock copolymers confined in thin films. A real-space self-consistent field theory study. Polymer. 2006;47:2205–2216. doi: 10.1016/j.polymer.2006.01.047. DOI

Chen H.-Y., Fredrickson G.H. Morphologies of ABC triblock copolymer thin films. J. Chem. Phys. 2002;116:1137–1146. doi: 10.1063/1.1426414. DOI

Geisinger T., Müller M., Binder K. Symmetric diblock copolymers in thin films. I. Phase stability in self-consistent field calculations and Monte Carlo simulations. J. Chem. Phys. 1999;111:5241–5250. doi: 10.1063/1.479778. DOI

Sheng Y., An J., Zhu Y. Self-assembly of ABA triblock copolymers under soft confinement. Chem. Phys. 2015;452:46–52. doi: 10.1016/j.chemphys.2015.02.019. DOI

Zhou Y., Long X., Xue X., Qian W., Zhang C. Morphologies and dynamics of linear ABC triblock copolymers with different block sequences. RSC Adv. 2015;5:7661–7664. doi: 10.1039/C4RA13814G. DOI

Arai N., Yausoka K., Zeng X.C. Self-Assembly of Triblock Janus Nanoparticle in Nanotube. J. Chem. Theory Comput. 2012;9:179–187. doi: 10.1021/ct3007748. PubMed DOI

Karunakaran M., Nunes S., Qiu X., Yu H., Peinemann K.-V. Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation. J. Membr. Sci. 2014;453:471–477. doi: 10.1016/j.memsci.2013.11.015. DOI

Jung A., Rangou S., Abetz C., Filiz V., Abetz V. Structure Formation of Integral Asymmetric Composite Membranes of Polystyrene-block- Poly(2-vinylpyridine) on a Nonwoven. Macromol. Mater. Eng. 2012;297:790–798. doi: 10.1002/mame.201100359. DOI

Schacher F., Ulbricht M., Müller A.H.E. Self-Supporting, Double Stimuli-Responsive Porous Membranes From Polystyrene-block-poly(N,N-dimethylaminoethyl methacrylate) Diblock Copolymers. Adv. Funct. Mater. 2009;19:1040–1045. doi: 10.1002/adfm.200801457. PubMed DOI

Bulte A.M.W., Folkers B., Mulder M.H.V., Smolders C.A. Membranes of semicrystalline aliphatic polyamide nylon 4,6: Formation by diffusion-induced phase separation. J. Appl. Polym. Sci. 1993;50:13–26. doi: 10.1002/app.1993.070500103. DOI

Wang C., Quan X., Liao M., Li L., Zhou J. Computer Simulations on the Channel Membrane Formation by Nonsolvent Induced Phase Separation. Macromol. Theory Simul. 2017;26:1700027. doi: 10.1002/mats.201700027. DOI

Johansson E.O., Yamada T., Sundén B., Yuan J. Dissipative particle dynamics approach for nano-scale membrane structure reconstruction and water diffusion coefficient estimation. Int. J. Hydrogen Energy. 2015;40:1800–1808. doi: 10.1016/j.ijhydene.2014.11.030. DOI

Tang Y.-H., He Y.-D., Wang X.-L. Investigation on the membrane formation process of polymer–Diluent system via thermally induced phase separation accompanied with mass transfer across the interface: Dissipative particle dynamics simulation and its experimental verification. J. Membr. Sci. 2015;474:196–206. doi: 10.1016/j.memsci.2014.09.034. DOI

Marques D.S., Vainio U., Chaparro N.M., Calo V.M., Bezahd A.R., Pitera J.W., Peinemann K.-V., Nunes S.P. Self-assembly in casting solutions of block copolymer membranes. Soft Matter. 2013;9:5557–5564. doi: 10.1039/c3sm27475f. DOI

Karunakaran M., Shevate R., Peinemann K.-V. Nanostructured double hydrophobic poly(styrene-b-methyl methacrylate) block copolymer membrane manufactured via a phase inversion technique. RSC Adv. 2016;6:29064–29071. doi: 10.1039/C6RA02313D. DOI

Jiang H., Chen T., Chen Z., Huo J., Zhang L., Zhou J. Computer simulations on double hydrophobic PS-b-PMMA porous membrane by non-solvent induced phase separation. Fluid Phase Equilibria. 2020;523:112784. doi: 10.1016/j.fluid.2020.112784. DOI

Zhu Y.-L., Liu H., Li Z.-W., Qian H.-J., Milano G., Lu Z.-Y. GALAMOST: GPU-accelerated large-scale molecular simulation toolkit. J. Comput. Chem. 2013;34:2197–2211. doi: 10.1002/jcc.23365. PubMed DOI

Hao L.X., Lin L., Zhou J. pH-Responsive Zwitterionic Copolymer DHA-PBLG-PCB for Targeted Drug Delivery: A Computer Simulation Study. Langmuir. 2019;35:1944–1953. doi: 10.1021/acs.langmuir.8b00626. PubMed DOI

Malay O., Oguz O., Kosak C., Yilgor E., Yilgor I., Menceloglu Y.Z. Polyurethaneurea–silica nanocomposites: Preparation and investigation of the structure–property behavior. Polymers. 2013;54:5310–5320. doi: 10.1016/j.polymer.2013.07.043. DOI

Sun H., Zhang Y., Li S., Bai Y., Ma J., Shao L. Multifunctional Core–Shell Zwitterionic Nanoparticles To Build Robust, Stable Antifouling Membranes via Magnetic-Controlled Surface Segregation. ACS Appl. Mater. Interfaces. 2019;11:35501–35508. doi: 10.1021/acsami.9b13862. PubMed DOI

Zhang F., Zhang W.B., Yu Y., Deng B., Li J.Y., Jin J. Sol-gel preparation of PAA-g-PVDF/TiO2 nanocomposite hollow fiber membranes with extremely high water flux and improved antifouling property. J. Membr. Sci. 2013;432:25–32. doi: 10.1016/j.memsci.2012.12.041. DOI

Chen T., Wu F., Chen Z., Huo J., Zhao Y., Zhang L., Zhou J. Computer simulation of zwitterionic polymer brush grafted silica nanoparticles to modify polyvinylidene fluoride membrane. J. Colloid Interface Sci. 2021;587:173–182. doi: 10.1016/j.jcis.2020.11.122. PubMed DOI

Stoykovich M.P., Kang H., Daoulas K., Liu G., Liu C.-C., De Pablo J.J., Müller M., Nealey P.F. Directed Self-Assembly of Block Copolymers for Nanolithography: Fabrication of Isolated Features and Essential Integrated Circuit Geometries. ACS Nano. 2007;1:168–175. doi: 10.1021/nn700164p. PubMed DOI

Takahashi K., Koishi T. Spontaneous self-assembly of diblock copolymers in nanoconfined geometries by dissipative particle dynamics. Mol. Simul. 2014;41:961–967. doi: 10.1080/08927022.2014.928708. DOI

Chandan A., Hattenberger M., El-Kharouf A., Du S., Dhir A., Self V., Pollet B.G., Ingram A., Bujalski W. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)—A review. J. Power Sources. 2013;231:264–278. doi: 10.1016/j.jpowsour.2012.11.126. DOI

Wang Y., Chen K.S., Mishler J., Cho S.C., Adroher X.C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy. 2011;88:981–1007. doi: 10.1016/j.apenergy.2010.09.030. DOI

Sen U., Ozdemir M., Erkartal M., Kaya A., Manda A., Oveisi A., Aboudzadeh M., Tokumasu T. Mesoscale Morphologies of Nafion-Based Blend Membranes by Dissipative Particle Dynamics. Process. 2021;9:984. doi: 10.3390/pr9060984. DOI

Sengupta S., Lyulin A. Dissipative Particle Dynamics Modeling of Polyelectrolyte Membrane–Water Interfaces. Polymers. 2020;12:907. doi: 10.3390/polym12040907. PubMed DOI PMC

Kobayashi Y., Arai N. Janus or homogeneous nanoparticle mediated self-assembly of polymer electrolyte fuel cell membranes. RSC Adv. 2018;8:18568–18575. doi: 10.1039/C8RA03187H. PubMed DOI PMC

Vishnyakov A., Mao R., Lee M.-T., Neimark A.V. Coarse-grained model of nanoscale segregation, water diffusion, and proton transport in Nafion membranes. J. Chem. Phys. 2018;148:024108. doi: 10.1063/1.4997401. PubMed DOI

Vanya P., Sharman J., Elliott J.A. Mesoscale simulations of confined Nafion thin films. J. Chem. Phys. 2017;147:214904. doi: 10.1063/1.4996695. PubMed DOI

Lee M.-T., Vishnyakov A., Neimark A.V. Modeling Proton Dissociation and Transfer Using Dissipative Particle Dynamics Simulation. J. Chem. Theory Comput. 2015;11:4395–4403. doi: 10.1021/acs.jctc.5b00467. PubMed DOI

Huang H., Alexander-Katz A. Dissipative particle dynamics for directed self-assembly of block copolymers. J. Chem. Phys. 2019;151:154905. doi: 10.1063/1.5117839. PubMed DOI

MDPI . Theory of Polymers at Interfaces. MDPI; Basel, Switzerland: 2020.

Baschnagel J., Meyer H., Varnik F., Metzger S., Aichele M., Müller M., Binder K. Computer Simulations of Polymers Close to Solid Interfaces: Some Selected Topics. Interface Sci. 2003;11:159–173. doi: 10.1023/A:1022118610890. DOI

Guskova O.A., Seidel C. Assembly of nano-particles on diblock copolymer brushes: Toward laterally nano-structured composites. Soft Matter. 2012;8:2833–2843. doi: 10.1039/c2sm07362e. DOI

Gumerov R.A., Rudov A.A., Richtering W., Möller M., Potemkin I.I. Amphiphilic Arborescent Copolymers and Microgels: From Unimolecular Micelles in a Selective Solvent to the Stable Monolayers of Variable Density and Nanostructure at a Liquid Interface. ACS Appl. Mater. Interfaces. 2017;9:31302–31316. doi: 10.1021/acsami.7b00772. PubMed DOI

Gauthier M., Moller M. Uniform highly branched polymers by anionic grafting—Arborescent graft polymers. Macromolecules. 1991;24:4548–4553. doi: 10.1021/ma00016a011. DOI

Tomalia D.A., Hedstrand D.M., Ferritto M.S. Comb-burst dendrimer topology—New macromolecular architecture derived from dendritic grafting. Macromolecules. 1991;24:1435–1438. doi: 10.1021/ma00006a039. DOI

Dockendorff J., Gauthier M., Mourran A., Möller M. Arborescent Amphiphilic Copolymers as Templates for the Preparation of Gold Nanoparticles. Macromolecules. 2008;41:6621–6623. doi: 10.1021/ma801320r. DOI

Njikang G.N., Gauthier M., Li J. Sustained release properties of arborescent polystyrene-graft-poly(2-vinylpyridine) copolymers. Polymer. 2008;49:5474–5481. doi: 10.1016/j.polymer.2008.10.002. DOI

Gauthier M., Lin W.-Y., Teertstra S.J., Tzoganakis C. Fluorine-containing arborescent polystyrene-graft-polyisoprene copolymers as polymer processing additives. Polymer. 2010;51:3123–3129. doi: 10.1016/j.polymer.2010.04.044. DOI

Wang X., Limpouchová Z., Procházka K., Liu Y., Min Y. Phase equilibria and conformational behavior of dendrimers in porous media: Towards chromatographic analysis of dendrimers. J. Colloid Interface Sci. 2021;608:830–839. doi: 10.1016/j.jcis.2021.09.177. PubMed DOI

Feng Y.H., Zhang X.P., Li J.Y., Guo X.D. How is a micelle formed from amphiphilic polymers in a dialysis process: Insight from mesoscopic studies. Chem. Phys. Lett. 2020;754:137711. doi: 10.1016/j.cplett.2020.137711. DOI

Gooneie A., Sapkota J., Shirole A., Holzer C. Length controlled kinetics of self-assembly of bidisperse nanotubes/nanorods in polymers. Polymer. 2017;118:236–248. doi: 10.1016/j.polymer.2017.05.010. DOI

Guo Y., Ma Z., Ding Z., Li R.K.Y. Kinetics of Laterally Nanostructured Vesicle Formation by Self-Assembly of Miktoarm Star Terpolymers in Aqueous Solution. Langmuir. 2013;29:12811–12817. doi: 10.1021/la4023807. PubMed DOI

Ye X., Khomami B. Self-assembly of linear diblock copolymers in selective solvents: From single micelles to particles with tri-continuous inner structures. Soft Matter. 2020;16:6056–6062. doi: 10.1039/D0SM00402B. PubMed DOI

Lísal M., Limpouchová Z., Procházka K. The self-assembly of copolymers with one hydrophobic and one polyelectrolyte block in aqueous media: A dissipative particle dynamics study. Phys. Chem. Chem. Phys. 2016;18:16127–16136. doi: 10.1039/C6CP00341A. PubMed DOI

Español P., Warren P.B. Perspective: Dissipative particle dynamics. J. Chem. Phys. 2017;146:150901. doi: 10.1063/1.4979514. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...