Self-Assembly of Symmetric Copolymers in Slits with Inert and Attractive Walls
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-01233S
Czech Science Foundation
PubMed
38006182
PubMed Central
PMC10675682
DOI
10.3390/polym15224458
PII: polym15224458
Knihovny.cz E-zdroje
- Klíčová slova
- confined copolymer, dissipative particle dynamics, polymer–wall interaction, selective solvent, self-assembly, slit,
- Publikační typ
- časopisecké články MeSH
Although the behavior of the confined semi-dilute solutions of self-assembling copolymers represents an important topic of basic and applied research, it has eluded the interest of scientists. Extensive series of dissipative particle dynamics simulations have been performed on semi-dilute solutions of A5B5 chains in a selective solvent for A in slits using a DL-MESO simulation package. Simulations of corresponding bulk systems were performed for comparison. This study shows that the associates in the semi-dilute bulk solutions are partly structurally organized. Mild steric constraints in slits with non-attractive walls hardly affect the size of the associates, but they promote their structural arrangement in layers parallel to the slit walls. Attractive walls noticeably affect the association process. In slits with mildly attractive walls, the adsorption competes with the association process. At elevated concentrations, the associates start to form in wide slits when the walls are sparsely covered by separated associates, and the association process prevents the full coverage of the surface. In slits with strongly attractive walls, adsorption is the dominant behavior. The associates form in wide slits at elevated concentrations only after the walls are completely and continuously covered by the adsorbed chains.
Zobrazit více v PubMed
Nagarajan R. Constructing a molecular theory of self-assembly: Interplay of ideas from surfactants and block copolymers. Adv. Colloid Interface Sci. 2017;244:113–123. doi: 10.1016/j.cis.2016.12.001. PubMed DOI
Nagarajan R., Ganesh K. Block copolymer self-assembly in selective solvents–spherical micelles with segregated cores. J. Chem. Phys. 1989;90:5843–5856. doi: 10.1063/1.456390. DOI
Syamala P.P.N., Wurthner F. Modulation of the Self-Assembly of pi-Amphiphiles in Water from Enthalpy- to Entropy-Driven by Enwrapping Substituents. Chem. A Eur. J. 2020;26:8426–8434. doi: 10.1002/chem.202000995. PubMed DOI PMC
Zheng B., Yu L.L., Dong H.Z., Zhu J.M., Yang L., Yuan X.S. Photo-Responsive Micelles with Controllable and Co-Release of Carbon Monoxide, Formaldehyde and Doxorubicin. Polymers. 2022;14:2416. doi: 10.3390/polym14122416. PubMed DOI PMC
Avsar S.Y., Kyropoulou M., Di Leone S., Schoenenberger C.A., Meier W.P., Palivan C.G. Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Front. Chem. 2019;6:645. doi: 10.3389/fchem.2018.00645. PubMed DOI PMC
Kataoka K., Harada A., Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 2012;64:37–48. doi: 10.1016/j.addr.2012.09.013. PubMed DOI
Blanazs A., Armes S.P., Ryan A.J. Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications. Macromol. Rapid Commun. 2009;30:267–277. doi: 10.1002/marc.200800713. PubMed DOI
Kabanov A.V., Alakhov V.Y. Pluronic (R) block copolymers in drug delivery: From micellar nanocontainers to biological response modifiers. Crit. Rev. Ther. Drug Carr. Syst. 2002;19:1–72. doi: 10.1615/CritRevTherDrugCarrierSyst.v19.i1.10. PubMed DOI
Chrysostomou V., Forys A., Trzebicka B., Demetzos C., Pispas S. Amphiphilic Copolymer-Lipid Chimeric Nanosystems as DNA Vectors. Polymers. 2022;14:4901. doi: 10.3390/polym14224901. PubMed DOI PMC
Huang C.W., Chang Y.Y., Cheng C.C., Hung M.T., Mohamed M.G. Self-Assembled Supramolecular Micelles Based on Multiple Hydrogen Bonding Motifs for the Encapsulation and Release of Fullerene. Polymers. 2022;14:4923. doi: 10.3390/polym14224923. PubMed DOI PMC
Perumal S., Atchudan R., Lee W. A Review of Polymeric Micelles and Their Applications. Polymers. 2022;14:2510. doi: 10.3390/polym14122510. PubMed DOI PMC
Hils C., Manners I., Schöbel J., Schmalz H. Patchy Micelles with a Crystalline Core: Self-Assembly Concepts, Properties, and Applications. Polymers. 2021;13:1481. doi: 10.3390/polym13091481. PubMed DOI PMC
Xiao L.L., Zhou X., Yue K., Guo Z.H. Synthesis and Self-Assembly of Conjugated Block Copolymers. Polymers. 2021;13:110. doi: 10.3390/polym13010110. PubMed DOI PMC
Gohy J.-F., Zhao Y. Photo-responsive block copolymer micelles: Design and behavior. Chem. Soc. Rev. 2013;42:7117–7129. doi: 10.1039/c3cs35469e. PubMed DOI
Walther A., Mueller A.H.E. Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chem. Rev. 2013;113:5194–5261. doi: 10.1021/cr300089t. PubMed DOI
Mai Y.Y., Eisenberg A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012;41:5969–5985. doi: 10.1039/c2cs35115c. PubMed DOI
Moughton A.O., Hillmyer M.A., Lodge T.P. Multicompartment Block Polymer Micelles. Macromolecules. 2012;45:2–19. doi: 10.1021/ma201865s. DOI
O’Reilly R.K., Hawker C.J., Wooley K.L. Cross-linked block copolymer micelles: Functional nanostructures of great potential and versatility. Chem. Soc. Rev. 2006;35:1068–1083. doi: 10.1039/b514858h. PubMed DOI
Uchman M., Stepanek M., Prevost S., Angelov B., Bednar J., Appavou M.S., Gradzielski M., Prochazka K. Coassembly of Poly(ethylene oxide)-block-poly(methacrylic acid) and N-Dodecylpyridinium Chloride in Aqueous Solutions Leading to Ordered Micellar Assemblies within Copolymer Aggregates. Macromolecules. 2012;45:6471–6480. doi: 10.1021/ma301510j. DOI
Podhajecka K., Stepanek M., Prochazka K., Brown W. Hybrid polymeric micelles with hydrophobic cores and mixed polyelectrolyte/nonelectrolyte shells in aqueous media. 2. Studies of the shell behavior. Langmuir. 2001;17:4245–4250. doi: 10.1021/la010247p. DOI
Matejicek P., Uhlik F., Limpouchova Z., Prochazka K., Tuzar Z., Webber S. Experimental study of hydrophobically modified amphiphilic block copolymer micelles using light scattering and nonradiative excitation energy transfer. Macromolecules. 2002;35:9487–9496. doi: 10.1021/ma012074g. DOI
Plestil J., Kriz J., Tuzar Z., Prochazka K., Melnichenko Y.B., Wignall G.D., Talingting M.R., Munk P., Webber S.E. Small-angle neutron scattering study of onion-type micelles. Macromol. Chem. Phys. 2001;202:553–563. doi: 10.1002/1521-3935(20010201)202:4<553::AID-MACP553>3.0.CO;2-6. DOI
Wong C.K., Qiang X., Müller A.H., Gröschel A.H. Self-Assembly of block copolymers into internally ordered microparticles. Prog. Polym. Sci. 2020;102:101211. doi: 10.1016/j.progpolymsci.2020.101211. DOI
Ok S., Vayer M., Sinturel C. A decade of innovation and progress in understanding the morphology and structure of heterogeneous polymers in rigid confinement. Soft Matter. 2021;17:7430–7458. doi: 10.1039/D1SM00522G. PubMed DOI
Tong L., Nabae Y., Hirai T., Yabu H., Hayakawa T. Creation of Thermal Response Ordered Mesostructure Polymer Particles Using Diblock Copolymers via 3D Confined Self-Assembly. Macromol. Chem. Phys. 2023;224:2200402. doi: 10.1002/macp.202200402. DOI
Juan Y.T., Lai Y.F., Li X.Y., Tai T.C., Huang C.F., Lin C.H., Li B.H., Shi A.C., Hsueh H.Y. Self-Assembly of Gyroid-Forming Diblock Copolymers under Spherical Confinement. Macromolecules. 2023;56:457–469. doi: 10.1021/acs.macromol.2c02086. DOI
Ashwini T., Narayan R., Shenoy P.A., Nayak U.Y. Computational modeling for the design and development of nano based drug delivery systems. J. Mol. Liq. 2022;368:120596. doi: 10.1016/j.molliq.2022.120596. DOI
Peng M.L., Hu D.W., Chang X.H., Zhu Y.T. Confined Self-Assembly of Block Copolymers within Emulsion Droplets: A Perspective. J. Phys. Chem. B. 2022;126:9435–9442. doi: 10.1021/acs.jpcb.2c06225. PubMed DOI
Lu Z., Liu G., Liu F. Block copolymer microspheres containing intricate nanometer-sized segregation patterns. Macromolecules. 2001;34:8814–8817. doi: 10.1021/ma0108463. DOI
Wu Y., Wang K., Tan H., Xu J., Zhu J. Emulsion solvent evaporation-induced self-assembly of block copolymers containing pH-sensitive block. Langmuir. 2017;33:9889–9896. doi: 10.1021/acs.langmuir.7b02330. PubMed DOI
Ku K.H., Shin J.M., Klinger D., Jang S.G., Hayward R.C., Hawker C.J., Kim B.J. Particles with tunable porosity and morphology by controlling interfacial instability in block copolymer emulsions. ACS Nano. 2016;10:5243–5251. doi: 10.1021/acsnano.6b00985. PubMed DOI
Wang X., Limpouchova Z., Prochazka K., Raya R.K., Min Y.G. Modeling the Phase Equilibria of Associating Polymers in Porous Media with Respect to Chromatographic Applications. Polymers. 2022;14:3182. doi: 10.3390/polym14153182. PubMed DOI PMC
Liu Y.L., Ke F.F., Li Y.C., Shi Y., Zhang Z., Chen Y.M. Emulsion confined block copolymer self-assembly: Recent progress and prospect. Nano Res. 2023;16:564–582. doi: 10.1007/s12274-022-4850-0. DOI
Mendoza C., Nirwan V.P., Fahmi A. Nanofabrication of hybrid nanomaterials: Macroscopically aligned nanoparticles pattern via directed self-assembly of block copolymers. J. Appl. Polym. Sci. 2023;140:e53409. doi: 10.1002/app.53409. DOI
Cifra P., Bleha T. Piston Compression of Semiflexible Ring Polymers in Channels. Macromol. Theory Simul. 2021;30:2100027. doi: 10.1002/mats.202100027. DOI
Mijangos C., Hernandez R., Martin J. A review on the progress of polymer nanostructures with modulated morphologies and properties, using nanoporous AAO templates. Prog. Polym. Sci. 2016;54–55:148–182. doi: 10.1016/j.progpolymsci.2015.10.003. DOI
Binder K., Milchev A. Polymer brushes on flat and curved surfaces: How computer simulations can help to test theories and to interpret experiments. J. Polym. Sci. Part B-Polym. Phys. 2012;50:1515–1555. doi: 10.1002/polb.23168. DOI
Binder K., Kreer T., Milchev A. Polymer brushes under flow and in other out-of-equilibrium conditions. Soft Matter. 2011;7:7159–7172. doi: 10.1039/c1sm05212h. DOI
Viduna D., Limpouchova Z., Prochazka K. Monte Carlo simulation of polymer brushes in narrow pores. J. Chem. Phys. 2001;115:7309–7318. doi: 10.1063/1.1405444. DOI
Limpouchova Z., Viduna D., Prochazka K. Mixed systems of tethered chains in spherical volumes. A model for cores of mixed copolymer micelles. Macromolecules. 1997;30:8027–8035. doi: 10.1021/ma970001k. DOI
Wang X., Procházka K., Limpouchová Z. Partitioning of polymers between bulk and porous media: Monte Carlo study of the effect of pore size distribution. J. Colloid Interface Sci. 2020;567:103–112. doi: 10.1016/j.jcis.2020.01.119. PubMed DOI
Wang X., Prochazka K., Limpouchova Z. Pore size effect on the separation of polymers by interaction chromatography. A Monte Carlo study. Anal. Chim. Acta. 2019;1064:126–137. doi: 10.1016/j.aca.2019.03.017. PubMed DOI
Wang X., Limpouchova Z., Prochazka K. Separation of polymers differing in their chain architecture by interaction chromatography: Phase equilibria and conformational behavior of polymers in strongly adsorbing porous media. Polymer. 2019;175:99–106. doi: 10.1016/j.polymer.2019.05.006. DOI
Ahn J., Chang T., Wang X., Limpouchova Z., Prochazka K. Influence of the chain architecture and the presence of end-groups or branching units chemically different from repeating structural units on the critical adsorption point in liquid chromatography. Macromolecules. 2017;50:8720–8730. doi: 10.1021/acs.macromol.7b01786. DOI
Cifra P., Bleha T. Confined macromolecules in polymer materials and processes. New Polym. Mater. 2005;916:238–251.
Skrinarova Z., Bleha T., Cifra P. Concentration effects in partitioning of macromolecules into pores with attractive walls. Macromolecules. 2002;35:8896–8905. doi: 10.1021/ma020808z. DOI
Hou C.L., Gao L.J., Wang Y.M., Yan L.T. Entropic control of nanoparticle self-assembly through confinement. Nanoscale Horiz. 2022;7:1016–1028. doi: 10.1039/D2NH00156J. PubMed DOI
Huang J.-H., Wu J.-J., Huang X.-W. Self-assembly of symmetric rod-coil diblock copolymers in cylindrical nanopore. RSC Adv. 2016;6:100559–100567. doi: 10.1039/C6RA22122J. DOI
Deng R.H., Li H., Liang F.X., Zhu J.T., Li B.H., Xie X.L., Yang Z.Z. Soft Colloidal Molecules with Tunable Geometry by 3D Confined Assembly of Block Copolymers. Macromolecules. 2015;48:5855–5860. doi: 10.1021/acs.macromol.5b01261. DOI
Hoogerbrugge P.J., Koelman J.M.V.A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 1992;19:155–160. doi: 10.1209/0295-5075/19/3/001. DOI
Espanol P., Warren P.B. Perspective: Dissipative particle dynamics. J. Chem. Phys. 2017;146:150901. doi: 10.1063/1.4979514. PubMed DOI
Gonzalez-Melchor M., Mayoral E., Velazquez M.E., Alejandre J. Electrostatic interactions in dissipative particle dynamics using the Ewald sums. J. Chem. Phys. 2006;125:224107. doi: 10.1063/1.2400223. PubMed DOI
Groot R.D. Applications of dissipative particle dynamics. In: Karttunen M., Vattulainen I., Lukkarinen A., editors. Novel Methods in Soft Matter Simulations. Springer; Berlin/Heidelberg, Germany: 2004. pp. 5–38.
Groot R.D. Electrostatic interactions in dissipative particle dynamics–simulation of polyelectrolytes and anionic surfactants (vol 118, pg 11265, 2003) J. Chem. Phys. 2003;119:10454. doi: 10.1063/1.1621380. DOI
Groot R.D., Warren P.B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997;107:4423–4435. doi: 10.1063/1.474784. DOI
Espanol P., Warren P. Statistical-mechanics of dissipative particle dynamics. Europhys. Lett. 1995;30:191–196. doi: 10.1209/0295-5075/30/4/001. DOI
Zhao J.Y., Chen S., Zhang K.X., Liu Y. A review of many-body dissipative particle dynamics (MDPD): Theoretical models and its applications. Phys. Fluids. 2021;33:112002. doi: 10.1063/5.0065538. DOI
Lombardo D., Kiselev M.A., Magazù S., Calandra P. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches. Adv. Condens. Matter Phys. 2015;2015:151683. doi: 10.1155/2015/151683. DOI
Blovský T., Šindelka K., Limpouchová Z., Procházka K. Changes in Ion Concentrations upon the Binding of Short Polyelectrolytes on Phospholipid Bilayers: Computer Study Addressing Interesting Physiological Consequences. Polymers. 2022;14:3634. doi: 10.3390/polym14173634. PubMed DOI PMC
Prochazka K., Limpouchova Z., Stepanek M., Sindelka K., Lisal M. DPD Modelling of the Self- and Co-Assembly of Polymers and Polyelectrolytes in Aqueous Media: Impact on Polymer Science. Polymers. 2022;14:404. doi: 10.3390/polym14030404. PubMed DOI PMC
Sindelka K., Limpouchova Z., Prochazka K. Solubilization of Charged Porphyrins in Interpolyelectrolyte Complexes: A Computer Study. Polymers. 2021;13:502. doi: 10.3390/polym13040502. PubMed DOI PMC
Sindelka K., Limpouchova Z., Lisal M., Prochazka K. The electrostatic co-assembly in non-stoichiometric aqueous mixtures of copolymers composed of one neutral water-soluble and one polyelectrolyte (either positively or negatively charged) block: A dissipative particle dynamics study. Phys. Chem. Chem. Phys. 2016;18:16137–16151. doi: 10.1039/C6CP01047D. PubMed DOI
Groot R.D., Rabone K.L. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys. J. 2001;81:725–736. doi: 10.1016/S0006-3495(01)75737-2. PubMed DOI PMC
Rubinstein M., Colby R.H. Polymer Physics. Oxford University; New York, NY, USA: 2003. p. 440.
Sindelka K., Lisal M. Interplay between surfactant self-assembly and adsorption at hydrophobic surfaces: Insights from dissipative particle dynamics. Mol. Phys. 2021;119:e1857863. doi: 10.1080/00268976.2020.1857863. DOI
Petrus P., Lisal M., Brennan J.K. Self-Assembly of Lamellar- and Cylinder-Forming Diblock Copolymers in Planar Slits: Insight from Dissipative Particle Dynamics Simulations. Langmuir. 2010;26:14680–14693. doi: 10.1021/la102666g. PubMed DOI
Posel Z., Posocco P., Lisal M., Fermeglia M., Pricl S. Highly grafted polystyrene/polyvinylpyridine polymer gold nanoparticles in a good solvent: Effects of chain length and composition. Soft Matter. 2016;12:3600–3611. doi: 10.1039/C5SM02867A. PubMed DOI
Seaton M.A. DL_MESO_DPD: Development and use of mesoscale modelling software. Mol. Simul. 2021;47:228–247. doi: 10.1080/08927022.2018.1524143. DOI
Prinsen P., Warren P.B., Michels M.A.J. Mesoscale simulations of surfactant dissolution and mesophase formation. Phys. Rev. Lett. 2002;89:148302. doi: 10.1103/PhysRevLett.89.148302. PubMed DOI
Milchev A., Bhattacharya A., Binder K. Formation of block copolymer micelles in solution: A Monte Carlo study chain length dependence. Macromolecules. 2001;34:1881–1893. doi: 10.1021/ma000645j. DOI
Balastre M., Li F., Schorr P., Yang J.C., Mays J.W., Tirrell M.V. A study of polyelectrolyte brushes formed from adsorption of amphiphilic diblock copolymers using the surface forces apparatus. Macromolecules. 2002;35:9480–9486. doi: 10.1021/ma011875g. DOI