Solubilization of Charged Porphyrins in Interpolyelectrolyte Complexes: A Computer Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-01233S
Grantová Agentura České Republiky
PubMed
33562022
PubMed Central
PMC7915837
DOI
10.3390/polym13040502
PII: polym13040502
Knihovny.cz E-zdroje
- Klíčová slova
- IPEC, computer simulations, electrostatic co-assembly, porphyrin, solubilization,
- Publikační typ
- časopisecké články MeSH
Using coarse-grained dissipative particle dynamics (DPD) with explicit electrostatics, we performed (i) an extensive series of simulations of the electrostatic co-assembly of asymmetric oppositely charged copolymers composed of one (either positively or negatively charged) polyelectrolyte (PE) block A and one water-soluble block B and (ii) studied the solubilization of positively charged porphyrin derivatives (P+) in the interpolyelectrolyte complex (IPEC) cores of co-assembled nanoparticles. We studied the stoichiometric mixtures of 137 A10+B25 and 137 A10-B25 chains with moderately hydrophobic A blocks (DPD interaction parameter aAS=35) and hydrophilic B blocks (aBS=25) with 10 to 120 P+ added (aPS=39). The P+ interactions with other components were set to match literature information on their limited solubility and aggregation behavior. The study shows that the moderately soluble P+ molecules easily solubilize in IPEC cores, where they partly replace PE+ and electrostatically crosslink PE- blocks. As the large P+ rings are apt to aggregate, P+ molecules aggregate in IPEC cores. The aggregation, which starts at very low loadings, is promoted by increasing the number of P+ in the mixture. The positively charged copolymers repelled from the central part of IPEC core partially concentrate at the core-shell interface and partially escape into bulk solvent depending on the amount of P+ in the mixture and on their association number, AS. If AS is lower than the ensemble average ⟨AS⟩n, the copolymer chains released from IPEC preferentially concentrate at the core-shell interface, thus increasing AS, which approaches ⟨AS⟩n. If AS>⟨AS⟩n, they escape into the bulk solvent.
Zobrazit více v PubMed
Imran M., Ramzan M., Qureshi A.K., Khan M.A., Tariq M. Emerging applications of porphyrins and metalloporphyrins in biomedicine and diagnostic magnetic resonance imaging. Biosensors. 2018;8:95. doi: 10.3390/bios8040095. PubMed DOI PMC
Huang H., Song W., Rieffel J., Lovell J.F. Emerging applications of porphyrins in photomedicine. Front. Phys. 2015;3:23. doi: 10.3389/fphy.2015.00023. PubMed DOI PMC
Dougherty T.J. Endoscopic Laser Surgery Handbook. Marcel Dekker Inc.; New York, NY, USA: 1987. Photodynamic therapy; p. 424.
Bonnett R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem. Soc. Rev. 1995;24:19–33. doi: 10.1039/cs9952400019. DOI
Brown S.B., Brown E.A., Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004;5:497–508. doi: 10.1016/S1470-2045(04)01529-3. PubMed DOI
Jahanbin T., Sauriat-Dorizon H., Spearman P., Benderbous S., Korri-Youssoufi H. Development of Gd (III) porphyrin-conjugated chitosan nanoparticles as contrast agents for magnetic resonance imaging. Mater. Sci. Eng. C. 2015;52:325–332. doi: 10.1016/j.msec.2015.03.007. PubMed DOI
Manus L.M., Strauch R.C., Hung A.H., Eckermann A.L., Meade T.J. Analytical Methods for Characterizing Magnetic Resonance Probes. Anal. Chem. 2012;84:6278–6287. doi: 10.1021/ac300527z. PubMed DOI PMC
Wang X., Yan F., Liu X., Wang P., Shao S., Sun Y., Sheng Z., Liu Q., Lovell J.F., Zheng H. Enhanced drug delivery using sonoactivatable liposomes with membrane-embedded porphyrins. J. Control. Release. 2018;286:358–368. doi: 10.1016/j.jconrel.2018.07.048. PubMed DOI
Biesaga M., Pyrzyńska K., Trojanowicz M. Porphyrins in analytical chemistry. A review. Talanta. 2000;51:209–224. doi: 10.1016/S0039-9140(99)00291-X. PubMed DOI
Leng F., Liu H., Ding M., Lin Q.P., Jiang H.L. Boosting photocatalytic hydrogen production of porphyrinic MOFs: The metal location in metalloporphyrin matters. ACS Catal. 2018;8:4583–4590. doi: 10.1021/acscatal.8b00764. DOI
Dini D., Calvete M.J., Hanack M. Nonlinear optical materials for the smart filtering of optical radiation. Chem. Rev. 2016;116:13043–13233. doi: 10.1021/acs.chemrev.6b00033. PubMed DOI
Saito S., Osuka A. Expanded porphyrins: Intriguing structures, electronic properties, and reactivities. Angew. Chem. Int. Ed. 2011;50:4342–4373. doi: 10.1002/anie.201003909. PubMed DOI
Zucca P., Neves C., Simões M.M., Neves M.d.G.P., Cocco G., Sanjust E. Immobilized lignin peroxidase-like metalloporphyrins as reusable catalysts in oxidative bleaching of industrial dyes. Molecules. 2016;21:964. doi: 10.3390/molecules21070964. PubMed DOI PMC
Lucky S.S., Soo K.C., Zhang Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015;115:1990–2042. doi: 10.1021/cr5004198. PubMed DOI
Gouterman M. Spectra of porphyrins. J. Mol. Spectrosc. 1961;6:138–163. doi: 10.1016/0022-2852(61)90236-3. DOI
Gouterman M., Wagnière G.H., Snyder L.C. Spectra of porphyrins: Part II. Four orbital model. J. Mol. Spectrosc. 1963;11:108–127. doi: 10.1016/0022-2852(63)90011-0. DOI
Kasha M. Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 1950;9:14–19. doi: 10.1039/df9500900014. DOI
Kasha M., Rawls H., El-Bayoumi M.A. The exciton model in molecular spectroscopy. Pure Appl. Chem. 1965;11:371–392. doi: 10.1351/pac196511030371. DOI
Aratani N., Osuka A., Kim Y.H., Jeong D.H., Kim D. Extremely Long, Discrete meso–meso-Coupled Porphyrin Arrays. Angew. Chem. Int. Ed. 2000;39:1458–1462. doi: 10.1002/(SICI)1521-3773(20000417)39:8<1458::AID-ANIE1458>3.0.CO;2-E. PubMed DOI
Kim Y.H., Jeong D.H., Kim D., Jeoung S.C., Cho H.S., Kim S.K., Aratani N., Osuka A. Photophysical Properties of Long Rodlike M eso- Meso-Linked Zinc (II) Porphyrins Investigated by Time-Resolved Laser Spectroscopic Methods. J. Am. Chem. Soc. 2001;123:76–86. doi: 10.1021/ja0009976. PubMed DOI
Nesterova I.V., Erdem S.S., Pakhomov S., Hammer R.P., Soper S.A. Phthalocyanine dimerization-based molecular beacons using near-IR fluorescence. J. Am. Chem. Soc. 2009;131:2432–2433. doi: 10.1021/ja8088247. PubMed DOI PMC
Chen J., Stefflova K., Niedre M.J., Wilson B.C., Chance B., Glickson J.D., Zheng G. Protease-triggered photosensitizing beacon based on singlet oxygen quenching and activation. J. Am. Chem. Soc. 2004;126:11450–11451. doi: 10.1021/ja047392k. PubMed DOI
Procházková K., Zelinger Z., Lang K., Kubát P. meso-Tetratolylporphyrins substituted by pyridinium groups: Aggregation, photophysical properties and complexation with DNA. J. Phys. Org. Chem. 2004;17:890–897. doi: 10.1002/poc.783. DOI
Calvete M.J., Pinto S.M., Pereira M.M., Geraldes C.F. Metal coordinated pyrrole-based macrocycles as contrast agents for magnetic resonance imaging technologies: Synthesis and applications. Coord. Chem. Rev. 2017;333:82–107. doi: 10.1016/j.ccr.2016.11.011. DOI
Zhao L., Xiang R., Zhang L., Wu C., Ma R., An Y., Shi L. Micellization of copolymers via noncovalent interaction with TPPS and aggregation of TPPS. Sci. China Chem. 2011;54:343–350. doi: 10.1007/s11426-010-4202-x. DOI
Cheng L., Wang C., Feng L., Yang K., Liu Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014;114:10869–10939. doi: 10.1021/cr400532z. PubMed DOI
Ghoroghchian P.P., Frail P.R., Susumu K., Blessington D., Brannan A.K., Bates F.S., Chance B., Hammer D.A., Therien M.J. Near-infrared-emissive polymersomes: Self-assembled soft matter for in vivo optical imaging. Proc. Natl. Acad. Sci. USA. 2005;102:2922–2927. doi: 10.1073/pnas.0409394102. PubMed DOI PMC
MacDonald T.D., Liu T.W., Zheng G. An MRI-sensitive, non-photobleachable porphysome photothermal agent. Angew. Chem. 2014;126:7076–7079. doi: 10.1002/ange.201400133. PubMed DOI
Zhao T., Wu H., Yao S.Q., Xu Q.H., Xu G.Q. Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization. Langmuir. 2010;26:14937–14942. doi: 10.1021/la102556u. PubMed DOI
Frühbeißer S., Gröhn F. Porphyrin—Polyelectrolyte Nanoassemblies: The Role of Charge and Building Block Architecture in Self-Assembly. Macromol. Chem. Phys. 2017;218:1600526. doi: 10.1002/macp.201600526. DOI
Frühbeißer S., Mariani G., Gröhn F. Porphyrin Diacid-Polyelectrolyte Assemblies: Effective Photocatalysts in Solution. Polymers. 2016;8:180. doi: 10.3390/polym8050180. PubMed DOI PMC
Karayianni M., Pispas S. Fluorescence Studies of Polymer Containing Systems. Springer; Berlin/Heidelberg, Germany: 2016. Self-assembly of amphiphilic block copolymers in selective solvents; pp. 27–63.
Walther A., Muller A.H. Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem. Rev. 2013;113:5194–5261. doi: 10.1021/cr300089t. PubMed DOI
Liu S., Armes S.P. Polymeric surfactants for the new millennium: A pH-responsive, zwitterionic, schizophrenic diblock copolymer. Angew. Chem. Int. Ed. 2002;41:1413–1416. doi: 10.1002/1521-3773(20020415)41:8<1413::AID-ANIE1413>3.0.CO;2-K. PubMed DOI
Berret J.F., Vigolo B., Eng R., Herve P., Grillo I., Yang L. Electrostatic self-assembly of oppositely charged copolymers and surfactants: A light, neutron, and X-ray scattering study. Macromolecules. 2004;37:4922–4930. doi: 10.1021/ma0498722. DOI
Rumyantsev A.M., Zhulina E.B., Borisov O.V. Scaling theory of complex coacervate core micelles. ACS Macro Lett. 2018;7:811–816. doi: 10.1021/acsmacrolett.8b00316. PubMed DOI
Rumyantsev A.M., Zhulina E.B., Borisov O.V. Complex coacervate of weakly charged polyelectrolytes: Diagram of states. Macromolecules. 2018;51:3788–3801. doi: 10.1021/acs.macromol.8b00342. DOI
Černochová Z., Bogomolova A., Borisova O.V., Filippov S.K., Černoch P., Billon L., Borisov O.V., Štěpánek P. Thermodynamics of the multi-stage self-assembly of pH-sensitive gradient copolymers in aqueous solutions. Soft Matter. 2016;12:6788–6798. doi: 10.1039/C6SM01105E. PubMed DOI
Borisov O., Zhulina E. Theory of self-assembly of triblock ter-polymers in selective solvent towards corona-compartmentalized (Janus) micelles. Polymer. 2013;54:2043–2048. doi: 10.1016/j.polymer.2013.01.015. DOI
van der Burgh S., de Keizer A., Stuart M. Complex coacervation core micelles. Colloidal stability and aggregation mechanism. Langmuir. 2004;20:1073–1084. doi: 10.1021/la035012n. PubMed DOI
Voets I.K. Fluorescence Studies of Polymer Containing Systems. Springer; Berlin/Heidelberg, Germany: 2016. Electrostatically driven assembly of polyelectrolytes; pp. 65–89.
Uchman M., Gradzielski M., Angelov B., Tošner Z., Oh J., Chang T., Štěpánek M., Procházka K. Thermodynamic and kinetic aspects of coassembly of PEO–PMAA block copolymer and DPCl surfactants into ordered nanoparticles in aqueous solutions studied by ITC, NMR, and time-resolved SAXS techniques. Macromolecules. 2013;46:2172–2181. doi: 10.1021/ma302503w. DOI
Uchman M., Štěpánek M., Prévost S., Angelov B., Bednár J., Appavou M.S., Gradzielski M., Procházka K. Coassembly of poly (ethylene oxide)-block-poly (methacrylic acid) and N-dodecylpyridinium chloride in aqueous solutions leading to ordered micellar assemblies within copolymer aggregates. Macromolecules. 2012;45:6471–6480. doi: 10.1021/ma301510j. DOI
Matějíček P., Uhlík F., Limpouchová Z., Procházka K., Tuzar Z., Webber S.E. Experimental study of hydrophobically modified amphiphilic block copolymer micelles using light scattering and nonradiative excitation energy transfer. Macromolecules. 2002;35:9487–9496. doi: 10.1021/ma012074g. DOI
Podhájecká K., Štěpánek M., Procházka K., Brown W. Hybrid polymeric micelles with hydrophobic cores and mixed polyelectrolyte/nonelectrolyte shells in aqueous media. 2. Studies of the shell behavior. Langmuir. 2001;17:4245–4250. doi: 10.1021/la010247p. DOI
Pleštil J., Kříž J., Tuzar Z., Prochazka K., Melnichenko Y.B., Wignall G., Talingting M., Munk P., Webber S. Small-Angle Neutron Scattering Study of Onion-Type Micelles. Macromol. Chem. Phys. 2001;202:553–563. doi: 10.1002/1521-3935(20010201)202:4<553::AID-MACP553>3.0.CO;2-6. DOI
Kataoka K., Harada A., Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 2012;64:37–48. doi: 10.1016/j.addr.2012.09.013. PubMed DOI
Kabanov A.V., Alakhov V.Y. Pluronic® block copolymers in drug delivery: From micellar nanocontainers to biological response modifiers. Crit. Rev. Ther. Drug Carr. Syst. 2002;19:1–72. doi: 10.1615/CritRevTherDrugCarrierSyst.v19.i1.10. PubMed DOI
Šindelka K., Limpouchová Z., Lísal M., Procházka K. The electrostatic co-assembly in non-stoichiometric aqueous mixtures of copolymers composed of one neutral water-soluble and one polyelectrolyte (either positively or negatively charged) block: A dissipative particle dynamics study. Phys. Chem. Chem. Phys. 2016;18:16137–16151. doi: 10.1039/C6CP01047D. PubMed DOI
Procházka K., Šindelka K., Wang X., Limpouchová Z., Lísal M. Self-assembly and co-assembly of block polyelectrolytes in aqueous solutions. Dissipative particle dynamics with explicit electrostatics. Mol. Phys. 2016;114:3077–3092. doi: 10.1080/00268976.2016.1225130. DOI
Šindelka K., Limpouchová Z., Procházka K. Computer study of the solubilization of polymer chains in polyelectrolyte complex cores of polymeric nanoparticles in aqueous media. Phys. Chem. Chem. Phys. 2018;20:29876–29888. doi: 10.1039/C8CP05907A. PubMed DOI
Lisal M., Šindelka K., Sucha L., Limpouchova Z., Procházka K. Dissipative particle dynamics simulations of polyelectrolyte self-assemblies. Methods with explicit electrostatics. Polym. Sci. Ser. C. 2017;59:77–101. doi: 10.1134/S1811238217010052. DOI
Uhlík F., Limpouchová Z., Jelínek K., Procházka K. Polyelectrolyte shells of copolymer micelles in aqueous solutions: A Monte Carlo study. J. Chem. Phys. 2004;121:2367–2375. doi: 10.1063/1.1763571. PubMed DOI
Posel Z., Limpouchová Z., Šindelka K., Lísal M., Procházka K. Dissipative particle dynamics study of the pH-dependent behavior of poly (2-vinylpyridine)-block-poly (ethylene oxide) diblock copolymer in aqueous buffers. Macromolecules. 2014;47:2503–2514. doi: 10.1021/ma402293c. DOI
Košovan P., Kuldová J., Limpouchová Z., Procházka K., Zhulina E.B., Borisov O.V. Molecular dynamics simulations of a polyelectrolyte star in poor solvent. Soft Matter. 2010;6:1872–1874. doi: 10.1039/b925067k. DOI
Lísal M., Limpouchová Z., Procházka K. The self-assembly of copolymers with one hydrophobic and one polyelectrolyte block in aqueous media: A dissipative particle dynamics study. Phys. Chem. Chem. Phys. 2016;18:16127–16136. doi: 10.1039/C6CP00341A. PubMed DOI
Havránková J., Limpouchová Z., Štěpánek M., Procházka K. Self-Assembly of Heteroarm Star Copolymers–A Monte Carlo Study. Macromol. Theory Simulations. 2007;16:386–398. doi: 10.1002/mats.200600086. DOI
Uhlík F., Limpouchová Z., Jel’ınek K., Procházka K. A Monte Carlo study of shells of hydrophobically modified amphiphilic copolymer micelles in polar solvents. J. Chem. Phys. 2003;118:11258–11264. doi: 10.1063/1.1575732. DOI
Limpouchová Z., Viduna D., Procházka K. Mixed systems of tethered chains in spherical volumes. A model for cores of mixed copolymer micelles. Macromolecules. 1997;30:8027–8035. doi: 10.1021/ma970001k. DOI
Viduna D., Limpouchová Z., Procházka K. Conformations of self-avoiding tethered chains and nonradiative energy transfer and migration in dense and constrained systems. A model for cores of polymeric micelles. Macromolecules. 1997;30:7263–7272. doi: 10.1021/ma970002c. DOI
Groot R.D., Warren P.B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997;107:4423–4435. doi: 10.1063/1.474784. DOI
Espanol P., Warren P. Statistical mechanics of dissipative particle dynamics. EPL (Europhysics Lett. 1995;30:191. doi: 10.1209/0295-5075/30/4/001. DOI
Groot R.D., Rabone K. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys. J. 2001;81:725–736. doi: 10.1016/S0006-3495(01)75737-2. PubMed DOI PMC
Hoogerbrugge P., Koelman J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL (Europhys. Lett.) 1992;19:155. doi: 10.1209/0295-5075/19/3/001. DOI
Mosinger J., Lang K., Plistil L., Jesenská S., Hostomský J., Zelinger Z., Kubát P. Fluorescent polyurethane nanofabrics: A source of singlet oxygen and oxygen sensing. Langmuir. 2010;26:10050–10056. doi: 10.1021/la1001607. PubMed DOI
Kubát P., Henke P., Berzediová V., Štěpánek M., Lang K., Mosinger J. Nanoparticles with embedded porphyrin photosensitizers for photooxidation reactions and continuous oxygen sensing. ACS Appl. Mater. Interfaces. 2017;9:36229–36238. doi: 10.1021/acsami.7b12009. PubMed DOI
Dolanskỳ J., Henke P., Malá Z., Žárská L., Kubát P., Mosinger J. Antibacterial nitric oxide-and singlet oxygen-releasing polystyrene nanoparticles responsive to light and temperature triggers. Nanoscale. 2018;10:2639–2648. doi: 10.1039/C7NR08822A. PubMed DOI
Kubát P., Henke P., Mosinger J. The effect of iodide and temperature on enhancing antibacterial properties of nanoparticles with an encapsulated photosensitizer. Colloids Surf. Biointerfaces. 2019;176:334–340. PubMed
Kubát P., Henke P., Raya R.K., Miroslav Š., Mosinger J. Polystyrene and Poly (ethylene glycol)-b-Poly (ε-caprolactone) Nanoparticles with Porphyrins: Structure, Size, and Photooxidation Properties. Langmuir. 2019;36:302–310. doi: 10.1021/acs.langmuir.9b03468. PubMed DOI
Espanol P. Dissipative particle dynamics with energy conservation. EPL (Europhys. Lett.) 1997;40:631. doi: 10.1209/epl/i1997-00515-8. DOI
Šindelka K., Limpouchová Z., Lísal M., Prochǎzka K. Dissipative particle dynamics study of electrostatic self-assembly in aqueous mixtures of copolymers containing one neutral water-soluble block and one either positively or negatively charged polyelectrolyte block. Macromolecules. 2014;47:6121–6134. doi: 10.1021/ma501018x. PubMed DOI
O’Sullivan M.C., Sprafke J.K., Kondratuk D.V., Rinfray C., Claridge T.D., Saywell A., Blunt M.O., O’Shea J.N., Beton P.H., Malfois M., et al. Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature. 2011;469:72–75. doi: 10.1038/nature09683. PubMed DOI
Kondratuk D.V., Perdigao L.M., O’Sullivan M.C., Svatek S., Smith G., O’Shea J.N., Beton P.H., Anderson H.L. Two vernier-templated routes to a 24-porphyrin nanoring. Angew. Chem. 2012;124:6800–6803. doi: 10.1002/ange.201202870. PubMed DOI
Liu S., Kondratuk D.V., Rousseaux S.A., Gil-Ramírez G., O’Sullivan M.C., Cremers J., Claridge T.D., Anderson H.L. Caterpillar track complexes in template-directed synthesis and correlated molecular motion. Angew. Chem. Int. Ed. 2015;54:5355–5359. doi: 10.1002/anie.201412293. PubMed DOI PMC
Kubát P., Lang K., Procházková K., Anzenbacher P. Self-aggregates of cationic meso-tetratolylporphyrins in aqueous solutions. Langmuir. 2003;19:422–428. doi: 10.1021/la026183f. DOI
Kubát P., Lang K., Zelinger Z., Kral V. Aggregation and photophysical properties of water-soluble sapphyrins. Chem. Phys. Lett. 2004;395:82–86. doi: 10.1016/j.cplett.2004.07.040. DOI
Mosinger J., Janošková M., Lang K., Kubát P. Light-induced aggregation of cationic porphyrins. J. Photochem. Photobiol. Chem. 2006;181:283–289. doi: 10.1016/j.jphotochem.2005.12.009. DOI
Chang H.Y., Lin Y.L., Sheng Y.J., Tsao H.K. Structural characteristics and fusion pathways of onion-like multilayered polymersome formed by amphiphilic comb-like graft copolymers. Macromolecules. 2013;46:5644–5656. doi: 10.1021/ma400667n. DOI
del Rosario Rodríguez-Hidalgo M., Soto-Figueroa C., Vicente L. Mesoscopic study of salt-responsive polymeric micelles: Structural inversion mechanisms via sequential addition of inorganic salts. Soft Matter. 2013;9:5762–5770. doi: 10.1039/c3sm50387a. DOI
Luo Z., Jiang J. pH-sensitive drug loading/releasing in amphiphilic copolymer PAE–PEG: Integrating molecular dynamics and dissipative particle dynamics simulations. J. Control. Release. 2012;162:185–193. doi: 10.1016/j.jconrel.2012.06.027. PubMed DOI
Gonzalez-Melchor M., Mayoral E., Velazquez M.E., Alejandre J. Electrostatic interactions in dissipative particle dynamics using the Ewald sums. J. Chem. Phys. 2006;125:224107. doi: 10.1063/1.2400223. PubMed DOI
Rubinstein M., Colby R.H. Polymer Physics. Volume 23 Oxford University Press; New York, NY, USA: 2003.
McQuarrie D.A., Simon J.D. Physical Chemistry: A Molecular Approach. Volume 1 University Science Books; Sausalito, CA, USA: 1997.
Chifotides H.T., Dunbar K.R. Anion- π interactions in supramolecular architectures. Accounts Chem. Res. 2013;46:894–906. doi: 10.1021/ar300251k. PubMed DOI
Wheeler S.E. Understanding substituent effects in noncovalent interactions involving aromatic rings. Accounts Chem. Res. 2013;46:1029–1038. doi: 10.1021/ar300109n. PubMed DOI
Frontera A., Quinonero D., Deya P.M. Cation–π and anion–π interactions. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011;1:440–459. doi: 10.1002/wcms.14. DOI