Minimal resin embedding of SBF-SEM samples reduces charging and facilitates finding a surface-linked region of interest
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN02000020
Technology Agency of the Czech Republic
LM2018129 Czech-BioImaging
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023050
Ministerstvo Školství, Mládeže a Tělovýchovy
OP VVV CZ.02.1.01/0.0/0.0/16_013/0001775
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
37641135
PubMed Central
PMC10463905
DOI
10.1186/s12983-023-00507-x
PII: 10.1186/s12983-023-00507-x
Knihovny.cz E-zdroje
- Klíčová slova
- 3D imaging, Arthropod, High resolution, Optical sectioning, ROI localization, SBEM, Serial block face, Specimen charging, Sub-slice imaging, Volume EM,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: For decoding the mechanism of how cells and organs function information on their ultrastructure is essential. High-resolution 3D imaging has revolutionized morphology. Serial block face scanning electron microscopy (SBF-SEM) offers non-laborious, automated imaging in 3D of up to ~ 1 mm3 large biological objects at nanometer-scale resolution. For many samples there are obstacles. Quality imaging is often hampered by charging effects, which originate in the nonconductive resin used for embedding. Especially, if the imaged region of interest (ROI) includes the surface of the sample and neighbours the empty resin, which insulates the object. This extra resin also obscures the sample's morphology, thus making navigation to the ROI difficult. RESULTS: Using the example of small arthropods and a fish roe we describe a workflow to prepare samples for SBF-SEM using the minimal resin (MR) embedding method. We show that for imaging of surface structures this simple approach conveniently tackles and solves both of the two major problems-charging and ROI localization-that complicate imaging of SBF-SEM samples embedded in an excess of overlying resin. As the surface ROI is not masked by the resin, samples can be precisely trimmed before they are placed into the imaging chamber. The initial approaching step is fast and easy. No extra trimming inside the microscope is necessary. Importantly, charging is absent or greatly reduced meaning that imaging can be accomplished under good vacuum conditions, typically at the optimal high vacuum. This leads to better resolution, better signal to noise ratio, and faster image acquisition. CONCLUSIONS: In MR embedded samples charging is minimized and ROI easily targeted. MR embedding does not require any special equipment or skills. It saves effort, microscope time and eventually leads to high quality data. Studies on surface-linked ROIs, or any samples normally surrounded by the excess of resin, would benefit from adopting the technique.
Department of Zoology Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Entomology Biology Centre CAS České Budějovice Czech Republic
Institute of Parasitology Biology Centre CAS České Budějovice Czech Republic
Zobrazit více v PubMed
Belevich I, Joensuu M, Kumar D, Vihinen H, Jokitalo E. Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets. PLoS Biol. 2016;14(1):e1002340. PubMed PMC
Boughorbel F, Koojiman CS, Lich BH, Bosch EGT, inventors; FEI Company, Hillsboro, OR (US), assignee. SEM image method. U.S. Patent US8, 232, 523 B2. 2012.
Büsse S, Hörnschemeyer T, Fischer C. Three-dimensional reconstruction on cell level: case study elucidates the ultrastructure of the spinning apparatus of Embia sp. (Insecta: Embioptera) R Soc Open Sci. 2016;3(10):160563. PubMed PMC
Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M, et al. TrakEM2 software for neural circuit reconstruction. PLoS ONE. 2012;7(6):e38011. PubMed PMC
Clarke J, Davey P, Aldred N. Sea anemones (Exaiptasia pallida) use a secreted adhesive and complex pedal disc morphology for surface attachment. BMC Zool. 2020;5(1):1–13.
de Goede M, Johlin E, Sciacca B, Boughorbel F, Garnett EC. 3D multi-energy deconvolution electron microscopy. Nanoscale. 2017;9(2):684–689. PubMed
Deerinck TJ, Shone TM, Bushong EA, Ramachandra R, Peltier ST, Ellisman MH. High-performance serial block-face SEM of nonconductive biological samples enabled by focal gas injection-based charge compensation. J Microsc. 2018;270(2):142–149. PubMed PMC
Denk W, Horstmann H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2004;2(11):e329. PubMed PMC
Genoud C, Titze B, Graff-Meyer A, Friedrich RW. Fast Homogeneous En Bloc staining of large tissue samples for volume electron microscopy. Front Neuroanat. 2018;12:76. PubMed PMC
Goggin P, Ho E, Gnaegi H, Searle S, Oreffo R, Schneider P. Development of protocols for the first serial block-face scanning electron microscopy (SBF SEM) studies of bone tissue. Bone. 2020;131:115107. PubMed PMC
Heymann JA, Hayles M, Gestmann I, Giannuzzi LA, Lich B, Subramaniam S. Site-specific 3D imaging of cells and tissues with a dual beam microscope. J Struct Biol. 2006;155(1):63–73. PubMed PMC
Hoffmann A, Käser S, Jakob M, Amodeo S, Peitsch C, Týč J, et al. Molecular model of the mitochondrial genome segregation machinery in. Proc Natl Acad Sci USA. 2018;115(8):E1809–E1818. PubMed PMC
Hua Y, Laserstein P, Helmstaedter M. Large-volume en-bloc staining for electron microscopy-based connectomics. Nat Commun. 2015;6:7923. PubMed PMC
Hughes L, Borrett S, Towers K, Starborg T, Vaughan S. Patterns of organelle ontogeny through a cell cycle revealed by whole-cell reconstructions using 3D electron microscopy. J Cell Sci. 2017;130(3):637–647. PubMed
Hyra M, Czernekova M, Student S, Poprawa I. Traditional and modern methods in tardigrade analysis. In: European microscopy congress 2016: proceedings. p. 109–10.
Irwin AR, Williams ST, Speiser DI, Roberts NW. The marine gastropod Conomurex luhuanus (Strombidae) has high-resolution spatial vision and eyes with complex retinas. J Exp Biol. 2022;225(16):jeb243927. PubMed PMC
Joy D, Joy C. Low voltage scanning electron microscopy. Micron. 1996;27(3–4):247–263.
Kaji T, Song C, Murata K, Nonaka S, Ogawa K, Kondo Y, et al. Evolutionary transformation of mouthparts from particle-feeding to piercing carnivory in Viper copepods: review and 3D analyses of a key innovation using advanced imaging techniques. Front Zool. 2019;16:35. PubMed PMC
Kaji T, Kakui K, Miyazaki N, Murata K, Palmer A. Mesoscale morphology at nanoscale resolution: serial block-face scanning electron microscopy reveals fine 3D detail of a novel silk spinneret system in a tube-building tanaid crustacean. Front Zool. 2016;13:1–9. PubMed PMC
Käser S, Oeljeklaus S, Týč J, Vaughan S, Warscheid B, Schneider A. Outer membrane protein functions as integrator of protein import and DNA inheritance in mitochondria. Proc Natl Acad Sci USA. 2016;113(31):E4467–E4475. PubMed PMC
Knauthe P, Beutel R, Hornschemeyer T, Pohl H. Serial block-face scanning electron microscopy sheds new light on the head anatomy of an extremely miniaturized insect larva (Strepsiptera) Arthropod Syst Phylogeny. 2016;74(2):107–126.
Knott G, Marchman H, Wall D, Lich B. Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci. 2008;28(12):2959–2964. PubMed PMC
Konopova B, Akam M. The Hox genes Ultrabithorax and abdominal—a specify three different types of abdominal appendage in the springtail Orchesella cincta (Collembola) EvoDevo. 2014;5(1):2. PubMed PMC
Leighton SB. SEM images of block faces, cut by miniature microtome within the SEM—a technical note. Scanning Electron Microsc. 1981;(Pt 2):73–6. PubMed
Lipke E, Hornschemeyer T, Pakzad A, Booth C, Michalik P. Serial block-face imaging and its potential for reconstructing diminutive cell systems: a case study from arthropods. Microsc Microanal. 2014;20(3):946–955. PubMed
Lippens S, Kremer A, Borghgraef P, Guerin C, MullerReichert T, Pigino G. Serial block face-scanning electron microscopy for volume electron microscopy. Three Dimens Electron Microsc. 2019;152:69–85. PubMed
Lu Y, Wang F, Wang H, Bastians P, Yunfeng H. Large-scale 3D imaging of mouse cochlea using serial block-face scanning electron microscopy. STAR Protoc. 2021;2(2):100515. PubMed PMC
Marsh BJ, Volkmann N, McIntosh JR, Howell KE. Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. Proc Natl Acad Sci USA. 2004;101(15):5565–5570. PubMed PMC
Mathieu C. The beam-gas and signal-gas interactions in the variable pressure scanning electron microscope. Scanning Microsc. 1999;13(1):23–41. PubMed
Moncrieff DA, Robinson VN. Harris LB Charge neutralisation of insulating surfaces in the SEM by gas ionisation. J Phys D Appl Phys. 2001;11:2315.
Narayan K, Subramaniam S. Focused ion beams in biology. Nat Methods. 2015;12(11):1021–1031. PubMed PMC
Nguyen H, Thai T, Saitoh S, Wu B, Saitoh Y, Shimo S, et al. Conductive resins improve charging and resolution of acquired images in electron microscopic volume imaging. Sci Rep. 2016;6:23721. PubMed PMC
Nguyen HB, Thai TQ, Sui Y, Azuma M, Fujiwara K, Ohno N. Methodological improvements with conductive materials for volume imaging of neural circuits by electron microscopy. Front Neural Circuits. 2018;12:108. PubMed PMC
Odriozola A, Llodrá J, Radecke J, Ruegsegger C, Tschanz S, Saxena S, et al. High contrast staining for serial block face scanning electron microscopy without uranyl acetate. bioRxiv. 2017:207472.
Peddie CJ, Collinson LM. Exploring the third dimension: volume electron microscopy comes of age. Micron. 2014;61:9–19. PubMed
Peddie CJ, Genoud C, Kreshuk A, Meechan K, Micheva KD, Narayan K, et al. Volume electron microscopy. Nat Rev Methods Primers. 2022;2:51. PubMed PMC
Phelps JS, Hildebrand DGC, Graham BJ, Kuan AT, Thomas LA, Nguyen TM, et al. Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy. Cell. 2021;184(3):759–74.e18. PubMed PMC
Pilátová J, Tashyreva D, Týč J, Vancová M, Hussain Bokhari SN, Skoupý R, et al. Massive accumulation of strontium and barium in diplonemid protists. mBio. 2023;14(1):e0327922. PubMed PMC
Polilov AA, Makarova AA, Pang S, Shan XuC, Hess H. Protocol for preparation of heterogeneous biological samples for 3D electron microscopy: a case study for insects. Sci Rep. 2021;11(1):4717. PubMed PMC
Rose C, Casas-Sánchez A, Dyer NA, Solórzano C, Beckett AJ, Middlehurst B, et al. Trypanosoma brucei colonizes the tsetse gut via an immature peritrophic matrix in the proventriculus. Nat Microbiol. 2020;5(7):909–916. PubMed
Schieber NL, Machado P, Markert SM, Stigloher C, Schwab Y, Steyer AM. Minimal resin embedding of multicellular specimens for targeted FIB-SEM imaging. Methods Cell Biol. 2017;140:69–83. PubMed
Shahidi R, Williams EA, Conzelmann M, Asadulina A, Verasztó C, Jasek S, et al. A serial multiplex immunogold labeling method for identifying peptidergic neurons in connectomes. Elife. 2015;4:e11147. PubMed PMC
Smith D, Starborg T. Serial block face scanning electron microscopy in cell biology: applications and technology. Tissue Cell. 2019;57:111–122. PubMed
Steyer AM, Ruhwedel T, Möbius W. Biological sample preparation by high-pressure freezing, microwave-assisted contrast enhancement, and minimal resin embedding for volume imaging. J Vis Exp. 2019;145:e59156. PubMed
Thermofisher systems: Volumescope 2 SEM. https://www.thermofisher.com/jp/en/home/electron-microscopy/products/scanning-electron-microscopes/volumescope-2-sem.html (2022). Accessed 1 Mar 2023.
Titze B, Denk W. Automated in-chamber specimen coating for serial block-face electron microscopy. J Microsc. 2013;250(2):101–110. PubMed
Titze B, Genoud C. Volume scanning electron microscopy for imaging biological ultrastructure. Biol Cell. 2016;108(11):307–323. PubMed
Vergara HM, Pape C, Meechan KI, Zinchenko V, Genoud C, Wanner AA, et al. Whole-body integration of gene expression and single-cell morphology. Cell. 2021;184(18):4819–37.e22. PubMed PMC
Wang XQ, Guo JS, Li DT, Yu Y, Hagoort J, Moussian B, et al. Three-dimensional reconstruction of a whole insect reveals its phloem sap-sucking mechanism at nano-resolution. Elife. 2021;10:e62875. PubMed PMC
Wanner A, Genoud C, Masudi T, Siksou L, Friedrich R. Dense EM-based reconstruction of the interglomerular projectome in the zebrafish olfactory bulb. Nat Neurosci. 2016;19(6):816–825. PubMed
Weiner E, Pinskey J, Nicastro D, Otegui M. Electron microscopy for imaging organelles in plants and algae. Plant Physiol. 2022;188(2):713–725. PubMed PMC
White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1986;314(1165):1–340. PubMed