• Je něco špatně v tomto záznamu ?

Mechanisms of nuclear lamina growth in interphase

OA. Zhironkina, SY. Kurchashova, VA. Pozharskaia, VD. Cherepanynets, OS. Strelkova, P. Hozak, II. Kireev,

. 2016 ; 145 (4) : 419-32. [pub] 20160216

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc17000453
E-zdroje Online Plný text

NLK ProQuest Central od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2000-01-01 do Před 1 rokem
Nursing & Allied Health Database (ProQuest) od 1997-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1997-01-01 do Před 1 rokem
Public Health Database (ProQuest) od 1997-01-01 do Před 1 rokem

The nuclear lamina represents a multifunctional platform involved in such diverse yet interconnected processes as spatial organization of the genome, maintenance of mechanical stability of the nucleus, regulation of transcription and replication. Most of lamina activities are exerted through tethering of lamina-associated chromatin domains (LADs) to the nuclear periphery. Yet, the lamina is a dynamic structure demonstrating considerable expansion during the cell cycle to accommodate increased number of LADs formed during DNA replication. We analyzed dynamics of nuclear growth during interphase and changes in lamina structure as a function of cell cycle progression. The nuclear lamina demonstrates steady growth from G1 till G2, while quantitative analysis of lamina meshwork by super-resolution microscopy revealed that microdomain organization of the lamina is maintained, with lamin A and lamin B microdomain periodicity and interdomain gap sizes unchanged. FRAP analysis, in contrast, demonstrated differences in lamin A and B1 exchange rates; the latter showing higher recovery rate in S-phase cells. In order to further analyze the mechanism of lamina growth in interphase, we generated a lamina-free nuclear envelope in living interphase cells by reversible hypotonic shock. The nuclear envelope in nuclear buds formed after such a treatment initially lacked lamins, and analysis of lamina formation revealed striking difference in lamin A and B1 assembly: lamin A reassembled within 30 min post-treatment, whereas lamin B1 did not incorporate into the newly formed lamina at all. We suggest that in somatic cells lamin B1 meshwork growth is coordinated with replication of LADs, and lamin A meshwork assembly seems to be chromatin-independent process.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17000453
003      
CZ-PrNML
005      
20170117100032.0
007      
ta
008      
170103s2016 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00418-016-1419-6 $2 doi
024    7_
$a 10.1007/s00418-016-1419-6 $2 doi
035    __
$a (PubMed)26883443
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Zhironkina, Oxana A $u Department of Electron Microscopy, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, Moscow, Russia.
245    10
$a Mechanisms of nuclear lamina growth in interphase / $c OA. Zhironkina, SY. Kurchashova, VA. Pozharskaia, VD. Cherepanynets, OS. Strelkova, P. Hozak, II. Kireev,
520    9_
$a The nuclear lamina represents a multifunctional platform involved in such diverse yet interconnected processes as spatial organization of the genome, maintenance of mechanical stability of the nucleus, regulation of transcription and replication. Most of lamina activities are exerted through tethering of lamina-associated chromatin domains (LADs) to the nuclear periphery. Yet, the lamina is a dynamic structure demonstrating considerable expansion during the cell cycle to accommodate increased number of LADs formed during DNA replication. We analyzed dynamics of nuclear growth during interphase and changes in lamina structure as a function of cell cycle progression. The nuclear lamina demonstrates steady growth from G1 till G2, while quantitative analysis of lamina meshwork by super-resolution microscopy revealed that microdomain organization of the lamina is maintained, with lamin A and lamin B microdomain periodicity and interdomain gap sizes unchanged. FRAP analysis, in contrast, demonstrated differences in lamin A and B1 exchange rates; the latter showing higher recovery rate in S-phase cells. In order to further analyze the mechanism of lamina growth in interphase, we generated a lamina-free nuclear envelope in living interphase cells by reversible hypotonic shock. The nuclear envelope in nuclear buds formed after such a treatment initially lacked lamins, and analysis of lamina formation revealed striking difference in lamin A and B1 assembly: lamin A reassembled within 30 min post-treatment, whereas lamin B1 did not incorporate into the newly formed lamina at all. We suggest that in somatic cells lamin B1 meshwork growth is coordinated with replication of LADs, and lamin A meshwork assembly seems to be chromatin-independent process.
650    _2
$a zvířata $7 D000818
650    _2
$a kultivované buňky $7 D002478
650    _2
$a Cricetulus $7 D003412
650    _2
$a lidé $7 D006801
650    12
$a interfáze $7 D007399
650    _2
$a myši $7 D051379
650    _2
$a jaderná lamina $x chemie $x metabolismus $7 D034881
650    _2
$a prasata $7 D013552
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kurchashova, Svetlana Yu $u Department of Electron Microscopy, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, Moscow, Russia.
700    1_
$a Pozharskaia, Vasilisa A $u Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow, Russia.
700    1_
$a Cherepanynets, Varvara D $u Department of Electron Microscopy, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, Moscow, Russia.
700    1_
$a Strelkova, Olga S $u Department of Electron Microscopy, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, Moscow, Russia.
700    1_
$a Hozak, Pavel $u Institute of Molecular Genetics of the ASCR, v. v. i. Vídeňská 1083, 142 20, Prague 4, Czech Republic.
700    1_
$a Kireev, Igor I $u Department of Electron Microscopy, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, Moscow, Russia. kireev@genebee.msu.ru. Faculty of Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, Moscow, Russia. kireev@genebee.msu.ru.
773    0_
$w MED00002042 $t Histochemistry and cell biology $x 1432-119X $g Roč. 145, č. 4 (2016), s. 419-32
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26883443 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170103 $b ABA008
991    __
$a 20170117100138 $b ABA008
999    __
$a ok $b bmc $g 1179593 $s 961020
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 145 $c 4 $d 419-32 $e 20160216 $i 1432-119X $m Histochemistry and cell biology $n Histochem Cell Biol $x MED00002042
LZP    __
$a Pubmed-20170103

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...