Mechanisms of nuclear lamina growth in interphase
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26883443
DOI
10.1007/s00418-016-1419-6
PII: 10.1007/s00418-016-1419-6
Knihovny.cz E-zdroje
- Klíčová slova
- Cell cycle, DNA replication, Interphase, Microdomains, Nuclear lamina, Nucleus,
- MeSH
- Cricetulus MeSH
- interfáze * MeSH
- jaderná lamina chemie metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- myši MeSH
- prasata MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The nuclear lamina represents a multifunctional platform involved in such diverse yet interconnected processes as spatial organization of the genome, maintenance of mechanical stability of the nucleus, regulation of transcription and replication. Most of lamina activities are exerted through tethering of lamina-associated chromatin domains (LADs) to the nuclear periphery. Yet, the lamina is a dynamic structure demonstrating considerable expansion during the cell cycle to accommodate increased number of LADs formed during DNA replication. We analyzed dynamics of nuclear growth during interphase and changes in lamina structure as a function of cell cycle progression. The nuclear lamina demonstrates steady growth from G1 till G2, while quantitative analysis of lamina meshwork by super-resolution microscopy revealed that microdomain organization of the lamina is maintained, with lamin A and lamin B microdomain periodicity and interdomain gap sizes unchanged. FRAP analysis, in contrast, demonstrated differences in lamin A and B1 exchange rates; the latter showing higher recovery rate in S-phase cells. In order to further analyze the mechanism of lamina growth in interphase, we generated a lamina-free nuclear envelope in living interphase cells by reversible hypotonic shock. The nuclear envelope in nuclear buds formed after such a treatment initially lacked lamins, and analysis of lamina formation revealed striking difference in lamin A and B1 assembly: lamin A reassembled within 30 min post-treatment, whereas lamin B1 did not incorporate into the newly formed lamina at all. We suggest that in somatic cells lamin B1 meshwork growth is coordinated with replication of LADs, and lamin A meshwork assembly seems to be chromatin-independent process.
Faculty of Biology Lomonosov Moscow State University 1 40 Leninskie Gory Moscow Russia
Faculty of Chemistry Lomonosov Moscow State University 1 3 Leninskie Gory Moscow Russia
Institute of Molecular Genetics of the ASCR v v i Vídeňská 1083 142 20 Prague 4 Czech Republic
Zobrazit více v PubMed
J Cell Biol. 1998 Mar 9;140(5):975-89 PubMed
J Cell Sci. 2010 Jun 15;123(Pt 12):1973-8 PubMed
Adv Enzyme Regul. 2009;49(1):157-66 PubMed
PLoS Genet. 2008 Mar 21;4(3):e1000039 PubMed
Elife. 2014 Jan 01;3:e01630 PubMed
Cold Spring Harb Perspect Biol. 2010 Apr;2(4):a000554 PubMed
Cold Spring Harb Symp Quant Biol. 2010;75:555-65 PubMed
Biochem Biophys Res Commun. 1988 Oct 14;156(1):205-10 PubMed
Tsitologiia. 2003;45(3):298-307 PubMed
Mol Biol Cell. 2007 Mar;18(3):986-94 PubMed
Cold Spring Harb Symp Quant Biol. 2010;75:143-53 PubMed
Genome Biol. 2006;7(10):R100 PubMed
Nature. 1998 Aug 6;394(6693):592-5 PubMed
Nucleic Acids Res. 2015 Jan;43(Database issue):D1140-4 PubMed
Cold Spring Harb Perspect Biol. 2010 Nov;2(11):a000547 PubMed
Mol Cell. 2010 May 28;38(4):603-13 PubMed
Mol Cell Biol. 2006 May;26(10):3738-51 PubMed
Eur J Cell Biol. 1991 Feb;54(1):150-6 PubMed
Tsitologiia. 1974 Aug;16(8):931-5 PubMed
J Cell Sci. 2002 Nov 1;115(Pt 21):4037-51 PubMed
Trends Biochem Sci. 2013 Jul;38(7):356-63 PubMed
Nature. 2008 Jun 12;453(7197):948-51 PubMed
Mol Biol Cell. 2015 Nov 5;26(22):4075-86 PubMed
Genome Res. 2014 Jul;24(7):1102-14 PubMed
J Cell Biol. 1972 Nov;55(2):433-47 PubMed
Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10271-6 PubMed
J Cell Biol. 1974 Sep;62(3):746-54 PubMed
J Cell Biol. 2000 Apr 17;149(2):271-80 PubMed
J Cell Biol. 2013 Feb 18;200(4):429-41 PubMed
J Cell Biol. 1993 Dec;123(6 Pt 2):1671-85 PubMed
Cell. 2008 Aug 8;134(3):427-38 PubMed
J Cell Sci. 1999 Oct;112 ( Pt 20):3463-75 PubMed
Nucleic Acids Res. 1980 Jul 11;8(13):2895-906 PubMed
J Cell Biol. 1994 Oct;127(2):287-302 PubMed
Nature. 2008 Mar 13;452(7184):243-7 PubMed
J Cell Biol. 1997 Sep 22;138(6):1193-206 PubMed
Cell. 1990 Jul 13;62(1):89-106 PubMed
J Biol Chem. 1985 Jan 10;260(1):624-32 PubMed
Cell. 2013 Mar 28;153(1):178-92 PubMed
J Cell Sci Suppl. 1984;1:137-60 PubMed
Tsitologiia. 1988 Aug;30(8):926-32 PubMed
J Cell Biol. 2009 Aug 24;186(4):461-72 PubMed
J Cell Biol. 1992 Mar;116(5):1095-110 PubMed
Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2415-20 PubMed
Cold Spring Harb Symp Quant Biol. 2015 ;80:53-63 PubMed
Genes Dev. 2008 Dec 15;22(24):3409-21 PubMed
Nat Protoc. 2007;2(6):1467-78 PubMed
Tsitologiia. 1991;33(2):15-22 PubMed
J Cell Biol. 2000 Dec 11;151(6):1155-68 PubMed
J Cell Biol. 2007 Nov 19;179(4):593-600 PubMed
Mol Cell. 1999 Dec;4(6):983-93 PubMed