Isolation of a Genomic Region Affecting Most Components of Metabolic Syndrome in a Chromosome-16 Congenic Rat Model
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27031336
PubMed Central
PMC4816345
DOI
10.1371/journal.pone.0152708
PII: PONE-D-16-00772
Knihovny.cz E-zdroje
- MeSH
- genom MeSH
- glukózový toleranční test MeSH
- hemodynamika MeSH
- lidé MeSH
- lidské chromozomy, pár 16 genetika MeSH
- metabolický syndrom genetika metabolismus patofyziologie MeSH
- metabolom MeSH
- potkani inbrední BN genetika metabolismus fyziologie MeSH
- potkani inbrední SHR genetika metabolismus fyziologie MeSH
- zvířata kongenní genetika metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16) and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx) into the genomic background of the spontaneously hypertensive rat (SHR) strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18-28 mmHg difference) and diastolic (10-15 mmHg difference) blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001). The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes) are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1). Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic syndrome.
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5. 10.1161/CIRCULATIONAHA.109.192644 . PubMed DOI
Seda O, Tremblay J, Gaudet D, Brunelle PL, Gurau A, Merlo E, et al. Systematic, genome-wide, sex-specific linkage of cardiovascular traits in French Canadians. Hypertension. 2008;51(4):1156–62. 10.1161/HYPERTENSIONAHA.107.105247 . PubMed DOI
van Dongen J, Willemsen G, Chen WM, de Geus EJ, Boomsma DI. Heritability of metabolic syndrome traits in a large population-based sample. J Lipid Res. 2013;54(10):2914–23. 10.1194/jlr.P041673 PubMed DOI PMC
Sedova L, Seda O, Kazdova L, Chylikova B, Hamet P, Tremblay J, et al. Sucrose feeding during pregnancy and lactation elicits distinct metabolic response in offspring of an inbred genetic model of metabolic syndrome. American journal of physiology Endocrinology and metabolism. 2007;292(5):E1318–24. 10.1152/ajpendo.00526.2006 . PubMed DOI
Bureau A, Croteau J, Couture C, Vohl MC, Bouchard C, Perusse L. Estimating genetic effect sizes under joint disease-endophenotype models in presence of gene-environment interactions. Front Genet. 2015;6:248 10.3389/fgene.2015.00248 PubMed DOI PMC
Civelek M, Lusis AJ. Systems genetics approaches to understand complex traits. Nat Rev Genet. 2014;15(1):34–48. 10.1038/nrg3575 PubMed DOI PMC
Pravenec M. Use of rat genomics for investigating the metabolic syndrome. Methods Mol Biol. 2010;597:415–26. 10.1007/978-1-60327-389-3_28 . PubMed DOI
Wang J, Ma MCJ, Mennie AK, Pettus JM, Xu Y, Lin L, et al. Systems Biology with High-Throughput Sequencing Reveals Genetic Mechanisms Underlying the Metabolic Syndrome in the Lyon Hypertensive Rat. Circulation: Cardiovascular Genetics. 2015. 10.1161/circgenetics.114.000520 PubMed DOI PMC
Pravenec M, Klir P, Kren V, Zicha J, Kunes J. An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. J Hypertens. 1989;7(3):217–21. . PubMed
Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963;27:282–93. . PubMed
Seda O, Sedova L, Kazdova L, Krenova D, Kren V. Metabolic characterization of insulin resistance syndrome feature loci in three brown Norway-derived congenic strains. Folia biologica. 2002;48(3):81–8. . PubMed
Schork NJ, Krieger JE, Trolliet MR, Franchini KG, Koike G, Krieger EM, et al. A biometrical genome search in rats reveals the multigenic basis of blood pressure variation. Genome Res. 1995;5(2):164–72. . PubMed
Aneas I, Rodrigues MV, Pauletti BA, Silva GJ, Carmona R, Cardoso L, et al. Congenic strains provide evidence that four mapped loci in chromosomes 2, 4, and 16 influence hypertension in the SHR. Physiological genomics. 2009;37(1):52–7. 10.1152/physiolgenomics.90299.2008 . PubMed DOI
Stoll M, Kwitek-Black AE, Cowley AW Jr., Harris EL, Harrap SB, Krieger JE, et al. New target regions for human hypertension via comparative genomics. Genome Res. 2000;10(4):473–82. PubMed PMC
Chauvet C, Crespo K, Menard A, Roy J, Deng AY. Modularization and epistatic hierarchy determine homeostatic actions of multiple blood pressure quantitative trait loci. Hum Mol Genet. 2013;22(22):4451–9. 10.1093/hmg/ddt294 . PubMed DOI
Kriegel AJ, Didier DN, Li P, Lazar J, Greene AS. Mechanisms of cardioprotection resulting from Brown Norway chromosome 16 substitution in the salt-sensitive Dahl rat. Physiological genomics. 2012;44(16):819–27. 10.1152/physiolgenomics.00175.2011 PubMed DOI PMC
Langley SR, Bottolo L, Kunes J, Zicha J, Zidek V, Hubner N, et al. Systems-level approaches reveal conservation of trans-regulated genes in the rat and genetic determinants of blood pressure in humans. Cardiovasc Res. 2013;97(4):653–65. 10.1093/cvr/cvs329 PubMed DOI PMC
Mashimo T, Ogawa H, Cui ZH, Harada Y, Kawakami K, Masuda J, et al. Comprehensive QTL analysis of serum cholesterol levels before and after a high-cholesterol diet in SHRSP. Physiological genomics. 2007;30(2):95–101. 10.1152/physiolgenomics.00211.2006 . PubMed DOI
Bonne AC, den Bieman MG, Gillissen GF, Lankhorst A, Kenyon CJ, van Zutphen BF, et al. Quantitative trait loci influencing blood and liver cholesterol concentration in rats. Arterioscler Thromb Vasc Biol. 2002;22(12):2072–9. . PubMed
Baguhl R, Wilke B, Kloting N, Kloting I. Genes on rat chromosomes 3, 5, 10, and 16 are linked with facets of metabolic syndrome. Obesity (Silver Spring). 2009;17(6):1215–9. 10.1038/oby.2008.658 . PubMed DOI
Sugiura K, Miyake T, Taniguchi Y, Yamada T, Moralejo DH, Wei S, et al. Identification of novel non-insulin-dependent diabetes mellitus susceptibility loci in the Otsuka Long-Evans Tokushima fatty rat by MQM-mapping method. Mamm Genome. 1999;10(12):1126–31. . PubMed
Ways JA, Smith BM, Barbato JC, Ramdath RS, Pettee KM, DeRaedt SJ, et al. Congenic strains confirm aerobic running capacity quantitative trait loci on rat chromosome 16 and identify possible intermediate phenotypes. Physiological genomics. 2007;29(1):91–7. 10.1152/physiolgenomics.00027.2006 . PubMed DOI
Shimoyama M, De Pons J, Hayman GT, Laulederkind SJ, Liu W, Nigam R, et al. The Rat Genome Database 2015: genomic, phenotypic and environmental variations and disease. Nucleic Acids Res. 2015;43(Database issue):D743–50. 10.1093/nar/gku1026 PubMed DOI PMC
Seda O, Sedova L, Liska F, Krenova D, Prejzek V, Kazdova L, et al. Novel double-congenic strain reveals effects of spontaneously hypertensive rat chromosome 2 on specific lipoprotein subfractions and adiposity. Physiological genomics. 2006;27(1):95–102. 10.1152/physiolgenomics.00039.2006 . PubMed DOI
Sedova L, Liska F, Krenova D, Kazdova L, Tremblay J, Krupkova M, et al. CD36-deficient congenic strains show improved glucose tolerance and distinct shifts in metabolic and transcriptomic profiles. Heredity. 2012;109(1):63–70. 10.1038/hdy.2012.14 PubMed DOI PMC
Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(Database issue):D1001–6. 10.1093/nar/gkt1229 PubMed DOI PMC
Hubisz MJ, Pollard KS, Siepel A. PHAST and RPHAST: phylogenetic analysis with space/time models. Brief Bioinform. 2011;12(1):41–51. 10.1093/bib/bbq072 PubMed DOI PMC
Moujahidine M, Lambert R, Dutil J, Palijan A, Sivo Z, Ariyarajah A, et al. Combining congenic coverage with gene profiling in search of candidates for blood pressure quantitative trait loci in Dahl rats. Hypertension research: official journal of the Japanese Society of Hypertension. 2004;27(3):203–12. . PubMed
Tschritter O, Fritsche A, Shirkavand F, Machicao F, Haring H, Stumvoll M. Assessing the shape of the glucose curve during an oral glucose tolerance test. Diabetes Care. 2003;26(4):1026–33. . PubMed
Hoffman MJ, Flister MJ, Nunez L, Xiao B, Greene AS, Jacob HJ, et al. Female-specific hypertension loci on rat chromosome 13. Hypertension. 2013;62(3):557–63. 10.1161/HYPERTENSIONAHA.113.01708 PubMed DOI PMC
Ueno T, Tremblay J, Kunes J, Zicha J, Dobesova Z, Pausova Z, et al. Gender-specific genetic determinants of blood pressure and organ weight: pharmacogenetic approach. Physiological research / Academia Scientiarum Bohemoslovaca. 2003;52(6):689–700. . PubMed
Moreno C, Dumas P, Kaldunski ML, Tonellato PJ, Greene AS, Roman RJ, et al. Genomic map of cardiovascular phenotypes of hypertension in female Dahl S rats. Physiological genomics. 2003;15(3):243–57. 10.1152/physiolgenomics.00105.2003 . PubMed DOI
Fukuda M. Molecular cloning and characterization of human, rat, and mouse synaptotagmin XV. Biochem Biophys Res Commun. 2003;306(1):64–71. . PubMed
Montesano Gesualdi N, Chirico G, Catanese MT, Pirozzi G, Esposito F. AROS-29 is involved in adaptive response to oxidative stress. Free Radic Res. 2006;40(5):467–76. 10.1080/10715760600570547 . PubMed DOI
Hull RL, Johnson PY, Braun KR, Day AJ, Wight TN. Hyaluronan and hyaluronan binding proteins are normal components of mouse pancreatic islets and are differentially expressed by islet endocrine cell types. J Histochem Cytochem. 2012;60(10):749–60. 10.1369/0022155412457048 PubMed DOI PMC
Bergholdt R, Brorsson C, Palleja A, Berchtold LA, Floyel T, Bang-Berthelsen CH, et al. Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression. Diabetes. 2012;61(4):954–62. 10.2337/db11-1263 PubMed DOI PMC
Saxena R, Elbers CC, Guo Y, Peter I, Gaunt TR, Mega JL, et al. Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci. American journal of human genetics. 2012;90(3):410–25. 10.1016/j.ajhg.2011.12.022 PubMed DOI PMC
Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science. 2009;325(5939):433 10.1126/science.1172447 PubMed DOI PMC
Single-Gene Congenic Strain Reveals the Effect of Zbtb16 on Dexamethasone-Induced Insulin Resistance