Genetic signature of differentiated thyroid carcinoma susceptibility: a machine learning approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-print
Typ dokumentu časopisecké články
PubMed
35976137
PubMed Central
PMC9513665
DOI
10.1530/etj-22-0058
PII: e220058
Knihovny.cz E-zdroje
- Klíčová slova
- differentiated thyroid cancer, machine learning, single nucleotide polymorphism,
- Publikační typ
- časopisecké články MeSH
To identify a peculiar genetic combination predisposing to differentiated thyroid carcinoma (DTC), we selected a set of single nucleotide polymorphisms (SNPs) associated with DTC risk, considering polygenic risk score (PRS), Bayesian statistics and a machine learning (ML) classifier to describe cases and controls in three different datasets. Dataset 1 (649 DTC, 431 controls) has been previously genotyped in a genome-wide association study (GWAS) on Italian DTC. Dataset 2 (234 DTC, 101 controls) and dataset 3 (404 DTC, 392 controls) were genotyped. Associations of 171 SNPs reported to predispose to DTC in candidate studies were extracted from the GWAS of dataset 1, followed by replication of SNPs associated with DTC risk (P < 0.05) in dataset 2. The reliability of the identified SNPs was confirmed by PRS and Bayesian statistics after merging the three datasets. SNPs were used to describe the case/control state of individuals by ML classifier. Starting from 171 SNPs associated with DTC, 15 were positive in both datasets 1 and 2. Using these markers, PRS revealed that individuals in the fifth quintile had a seven-fold increased risk of DTC than those in the first. Bayesian inference confirmed that the selected 15 SNPs differentiate cases from controls. Results were corroborated by ML, finding a maximum AUC of about 0.7. A restricted selection of only 15 DTC-associated SNPs is able to describe the inner genetic structure of Italian individuals, and ML allows a fair prediction of case or control status based solely on the individual genetic background.
Center for Genomic Research University of Modena and Reggio Emilia Modena Italy
Department of Biology University of Pisa Pisa Italy
Department of Endocrinology University Hospital Pisa Italy
Division of Cancer Epidemiology German Cancer Research Center Heidelberg Germany
Division of Pediatric Neurooncology German Cancer Research Center Heidelberg Germany
Hopp Children's Cancer Center Heidelberg Germany
Institute of Reproductive Genetics University of Münster Münster Germany
PolitoMed Lab Department of Mechanical and Aerospace Engineering Politecnico di Torino Italy
Zobrazit více v PubMed
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 201868394–424. (10.3322/caac.21492) PubMed DOI
Kitahara CM, Sosa JA. The changing incidence of thyroid cancer. Nature Reviews: Endocrinology 201612646–653. (10.1038/nrendo.2016.110) PubMed DOI PMC
Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M.et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016261–133. (10.1089/thy.2015.0020) PubMed DOI PMC
Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet 20163882783–2795. (10.1016/S0140-6736(1630172-6) PubMed DOI
Fallah M, Pukkala E, Tryggvadottir L, Olsen JH, Tretli S, Sundquist K, Hemminki K. Risk of thyroid cancer in first-degree relatives of patients with non-medullary thyroid cancer by histology type and age at diagnosis: a joint study from five Nordic countries. Journal of Medical Genetics 201350373–382. (10.1136/jmedgenet-2012-101412) PubMed DOI
Hemminki K, Sundquist J, Lorenzo Bermejo J. Familial risks for cancer as the basis for evidence-based clinical referral and counseling. Oncologist 200813239–247. (10.1634/theoncologist.2007-0242) PubMed DOI
Saenko VA, Rogounovitch TI. Genetic polymorphism predisposing to differentiated thyroid cancer: a review of major findings of the genome-wide association studies. Endocrinology and Metabolism 201833164–174. (10.3803/EnM.2018.33.2.164) PubMed DOI PMC
Gudmundsson J, Sulem P, Gudbjartsson DF, Jonasson JG, Sigurdsson A, Bergthorsson JT, He H, Blondal T, Geller F, Jakobsdottir Met al.Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nature Genetics 200941460–464. (10.1038/ng.339) PubMed DOI PMC
Takahashi M, Saenko VA, Rogounovitch TI, Kawaguchi T, Drozd VM, Takigawa-Imamura H, Akulevich NM, Ratanajaraya C, Mitsutake N, Takamura Net al.The FOXE1 locus is a major genetic determinant for radiation-related thyroid carcinoma in Chernobyl. Human Molecular Genetics 2010192516–2523. (10.1093/hmg/ddq123) PubMed DOI
Jendrzejewski J, He H, Radomska HS, Li W, Tomsic J, Liyanarachchi S, Davuluri RV, Nagy R, de la Chapelle A. The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. PNAS 20121098646–8651. (10.1073/pnas.1205654109) PubMed DOI PMC
Gudmundsson J, Sulem P, Gudbjartsson DF, Jonasson JG, Masson G, He H, Jonasdottir A, Sigurdsson A, Stacey SN, Johannsdottir H.et al. Discovery of common variants associated with low TSH levels and thyroid cancer risk. Nature Genetics 201244319–322. (10.1038/ng.1046) PubMed DOI PMC
Köhler A, Chen B, Gemignani F, Elisei R, Romei C, Figlioli G, Cipollini M, Cristaudo A, Bambi F, Hoffmann P.et al. Genome-wide association study on differentiated thyroid cancer. Journal of Clinical Endocrinology and Metabolism 201398E1674–E1681. (10.1210/jc.2013-1941) PubMed DOI
Figlioli G, Köhler A, Chen B, Elisei R, Romei C, Cipollini M, Cristaudo A, Bambi F, Paolicchi E, Hoffmann P.et al. Novel genome-wide association study-based candidate loci for differentiated thyroid cancer risk. Journal of Clinical Endocrinology and Metabolism 201499E2084–E2092. (10.1210/jc.2014-1734) PubMed DOI
Son HY, Hwangbo Y, Yoo SK, Im SW, Yang SD, Kwak SJ, Park MS, Kwak SH, Cho SW, Ryu JS.et al. Genome-wide association and expression quantitative trait loci studies identify multiple susceptibility loci for thyroid cancer. Nature Communications 20178 15966. (10.1038/ncomms15966) PubMed DOI PMC
Gudmundsson J, Thorleifsson G, Sigurdsson JK, Stefansdottir L, Jonasson JG, Gudjonsson SA, Gudbjartsson DF, Masson G, Johannsdottir H, Halldorsson GH.et al. A genome-wide association study yields five novel thyroid cancer risk loci. Nature Communications 20178 14517. (10.1038/ncomms14517) PubMed DOI PMC
Yanes T, Young MA, Meiser B, James PA. Clinical applications of polygenic breast cancer risk: a critical review and perspectives of an emerging field. Breast Cancer Research 202022 21. (10.1186/s13058-020-01260-3) PubMed DOI PMC
Lambert SA, Abraham G, Inouye M. Towards clinical utility of polygenic risk scores. Human Molecular Genetics 201928 R133–R142. (10.1093/hmg/ddz187) PubMed DOI
Galeotti AA, Gentiluomo M, Rizzato C, Obazee O, Neoptolemos JP, Pasquali C, Nentwich M, Cavestro GM, Pezzilli R, Greenhalf Wet al.Polygenic and multifactorial scores for pancreatic ductal adenocarcinoma risk prediction. Journal of Medical Genetics 202058369–377. (10.1136/jmedgenet-2020-106961) PubMed DOI
Lindström S, Schumacher FR, Cox D, Travis RC, Albanes D, Allen NE, Andriole G, Berndt SI, Boeing H, Bueno-de-Mesquita HBet al.Common genetic variants in prostate cancer risk prediction – results from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). Cancer Epidemiology, Biomarkers and Prevention 201221437–444. (10.1158/1055-9965.EPI-11-1038) PubMed DOI PMC
Hüsing A, Canzian F, Beckmann L, Garcia-Closas M, Diver WR, Thun MJ, Berg CD, Hoover RN, Ziegler RG, Figueroa JDet al.Prediction of breast cancer risk by genetic risk factors, overall and by hormone receptor status. Journal of Medical Genetics 201249601–608. (10.1136/jmedgenet-2011-100716) PubMed DOI PMC
Mavaddat N, Pharoah PD, Michailidou K, Tyrer J, Brook MN, Bolla MK, Wang Q, Dennis J, Dunning AM, Shah Met al.Prediction of breast cancer risk based on profiling with common genetic variants. Journal of the National Cancer Institute 2015107djv036. (10.1093/jnci/djv036) PubMed DOI PMC
Hüsing A, Dossus L, Ferrari P, Tjønneland A, Hansen L, Fagherazzi G, Baglietto L, Schock H, Chang-Claude J, Boeing Het al.An epidemiological model for prediction of endometrial cancer risk in Europe. European Journal of Epidemiology 20163151–60. (10.1007/s10654-015-0030-9) PubMed DOI
Liyanarachchi S, Wojcicka A, Li W, Czetwertynska M, Stachlewska E, Nagy R, Hoag K, Wen B, Ploski R, Ringel MDet al.Cumulative risk impact of five genetic variants associated with papillary thyroid carcinoma. Thyroid 2013231532–1540. (10.1089/thy.2013.0102) PubMed DOI PMC
Liyanarachchi S, Gudmundsson J, Ferkingstad E, He H, Jonasson JG, Tragante V, Asselbergs FW, Xu L, Kiemeney LA, Netea-Maier RTet al.Assessing thyroid cancer risk using polygenic risk scores. PNAS 20201175997–6002. (10.1073/pnas.1919976117) PubMed DOI PMC
Kim BJ, Kim SH. Prediction of inherited genomic susceptibility to 20 common cancer types by a supervised machine-learning method. PNAS 20181151322–1327. (10.1073/pnas.1717960115) PubMed DOI PMC
Ge T, Chen CY, Ni Y, Feng YA, Smoller JW. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nature Communications 201910 1776. (10.1038/s41467-019-09718-5) PubMed DOI PMC
Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW. Genetic structure of human populations. Science 20022982381–2385. (10.1126/science.1078311) PubMed DOI
Luyapan J, Ji X, Li S, Xiao X, Zhu D, Duell EJ, Christiani DC, Schabath MB, Arnold SM, Zienolddiny Set al.A new efficient method to detect genetic interactions for lung cancer GWAS. BMC Medical Genomics 202013 162. (10.1186/s12920-020-00807-9) PubMed DOI PMC
Hu YJ, Lin DY. Analysis of untyped SNPs: maximum likelihood and imputation methods. Genetic Epidemiology 201034803–815. (10.1002/gepi.20527) PubMed DOI PMC
Hothorn LA, Hothorn T. Order-restricted scores test for the evaluation of population-based case-control studies when the genetic model is unknown. Biometrical Journal 200951659–669. (10.1002/bimj.200800203) PubMed DOI
Moldovan A, Waldman YY, Brandes N, Linial M. Body mass index and birth weight improve polygenic risk score for type 2 diabetes. Journal of Personalized Medicine 202111582. (10.3390/jpm11060582) PubMed DOI PMC
Casarini L, Brigante G. The polycystic ovary syndrome evolutionary paradox: a genome-wide association studies-based, in silico, evolutionary explanation. Journal of Clinical Endocrinology and Metabolism 201499E2412–E2420. (10.1210/jc.2014-2703) PubMed DOI
Ng AY, Jordan MI. On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. Presented at the Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic. Vancouver, British Columbia,Canada, 2001. (available at: https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf)
Friedman JH.Greedy function approximation: a gradient boosting machine. Annals of Statistics 2001291189–1232. (10.1214/aos/1013203451) DOI
Freund Y, Schapire RE. A decision–theoretic generalization of on-line learning and an application to boosting. In Computational Learning Theory, pp. 23–37. Berlin, Heidelberg: Springer, 1995. (10.1007/3-540-59119-2_166) DOI
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg Vet al.Scikit-learn: machine learning in Python. Journal of Machine Learning Research 2011122825–2830.
Freund Y, Schapire RE. Experiments with a new boosting algorithm. Presented at the Proceedings of the Thirteenth International Conference on International Conference on Machine Learning, Bari,Italy, 1996. (available at: https://cseweb.ucsd.edu/~yfreund/papers/boostingexperiments.pdf)
Platt J.Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers 19991061–74.
Lasko TA, Bhagwat JG, Zou KH, Ohno-Machado L. The use of receiver operating characteristic curves in biomedical informatics. Journal of Biomedical Informatics 200538404–415. (10.1016/j.jbi.2005.02.008) PubMed DOI
Wang YL, Feng SH, Guo SC, Wei WJ, Li DS, Wang Y, Wang X, Wang ZY, Ma YY, Jin Let al.Confirmation of papillary thyroid cancer susceptibility loci identified by genome-wide association studies of chromosomes 14q13, 9q22, 2q35 and 8p12 in a Chinese population. Journal of Medical Genetics 201350689–695. (10.1136/jmedgenet-2013-101687) PubMed DOI
Kim HS, Kim DH, Kim JY, Jeoung NH, Lee IK, Bong JG, Jung ED. Microarray analysis of papillary thyroid cancers in Korean. Korean Journal of Internal Medicine 201025399–407. (10.3904/kjim.2010.25.4.399) PubMed DOI PMC
Figlioli G, Elisei R, Romei C, Melaiu O, Cipollini M, Bambi F, Chen B, Köhler A, Cristaudo A, Hemminki Ket al.A comprehensive meta-analysis of case-control association studies to evaluate polymorphisms associated with the risk of differentiated thyroid carcinoma. Cancer Epidemiology, Biomarkers and Prevention 201625700–713. (10.1158/1055-9965.EPI-15-0652) PubMed DOI
Siraj AK, Ibrahim M, Al-Rasheed M, Abubaker J, Bu R, Siddiqui SU, Al-Dayel F, Al-Sanea O, Al-Nuaim A, Uddin Set al.Polymorphisms of selected xenobiotic genes contribute to the development of papillary thyroid cancer susceptibility in Middle Eastern population. BMC Medical Genetics 20089 61. (10.1186/1471-2350-9-61) PubMed DOI PMC
Irmiakova AR, Kochetova OV, Gaĭnullina MK, Sivochalova OV, Viktorova TV. Association of polymorph variants of CYP1A2 and CYP1A1 genes with reproductive and thyroid diseases in female workers of petrochemical industry. Meditsina Truda i Promyshlennaia Ekologiia 2012541–48. PubMed
Bufalo NE, Leite JL, Guilhen AC, Morari EC, Granja F, Assumpcao LV, Ward LS. Smoking and susceptibility to thyroid cancer: an inverse association with CYP1A1 allelic variants. Endocrine-Related Cancer 2006131185–1193. (10.1677/ERC-06-0002) PubMed DOI
GallegosVargas J, SanchezRoldan J, RonquilloSanchez M, Carmona Aparicio L, FlorianoSanchez E, CardenasRodriguez N. Gene expression of CYP1A1 and its possible clinical application in thyroid cancer cases. Asian Pacific Journal of Cancer Prevention 2016173477–3482. PubMed
de Morais RM, Sobrinho AB, de Souza Silva CM, de Oliveira JR, da Silva ICR, de Toledo Nóbrega O. The role of the NIS (SLC5A5) gene in papillary thyroid cancer: a systematic review. International Journal of Endocrinology 20182018 9128754. (10.1155/2018/9128754) PubMed DOI PMC
Heinrich PC, Behrmann I, Müller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochemical Journal 1998334297–314. (10.1042/bj3340297) PubMed DOI PMC
Katoh M, Katoh M. STAT3-induced WNT5A signaling loop in embryonic stem cells, adult normal tissues, chronic persistent inflammation, rheumatoid arthritis and cancer (Review). International Journal of Molecular Medicine 200719273–278. (10.3892/ijmm.19.2.273) PubMed DOI
Hanavadi S, Martin TA, Watkins G, Mansel RE, Jiang WG. Expression of interleukin 11 and its receptor and their prognostic value in human breast cancer. Annals of Surgical Oncology 200613802–808. (10.1245/ASO.2006.05.028) PubMed DOI
Goseki N, Koike M, Yoshida M. Histopathologic characteristics of early stage esophageal carcinoma. A comparative study with gastric carcinoma. Cancer 1992691088–1093. (10.1002/cncr.2820690503) PubMed DOI
Yamazumi K, Nakayama T, Kusaba T, Wen CY, Yoshizaki A, Yakata Y, Nagayasu T, Sekine I. Expression of interleukin-11 and interleukin-11 receptor alpha in human colorectal adenocarcinoma; immunohistochemical analyses and correlation with clinicopathological factors. World Journal of Gastroenterology 200612317–321. (10.3748/wjg.v12.i2.317) PubMed DOI PMC
Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL. Genetic alterations during colorectal-tumor development. New England Journal of Medicine 1988319525–532. (10.1056/NEJM198809013190901) PubMed DOI
Eun YG, Shin IH, Kim MJ, Chung JH, Song JY, Kwon KH. Associations between promoter polymorphism -106A/G of interleukin-11 receptor alpha and papillary thyroid cancer in Korean population. Surgery 2012151323–329. (10.1016/j.surg.2011.07.014) PubMed DOI
Lin P, Guo YN, Shi L, Li XJ, Yang H, He Y, Li Q, Dang YW, Wei KL, Chen G. Development of a prognostic index based on an immunogenomic landscape analysis of papillary thyroid cancer. Aging 201911480–500. (10.18632/aging.101754) PubMed DOI PMC
Zhong Z, Hu Z, Jiang Y, Sun R, Chen X, Chu H, Zeng M, Sun C. Interleukin-11 promotes epithelial-mesenchymal transition in anaplastic thyroid carcinoma cells through PI3K/Akt/GSK3β signaling pathway activation. Oncotarget 2016759652–59663. (10.18632/oncotarget.10831) PubMed DOI PMC
Wang Y, Wei T, Xiong J, Chen P, Wang X, Zhang L, Gao L, Zhu J. Association between genetic polymorphisms in the promoter regions of Let-7 and risk of papillary thyroid carcinoma: a case-control study. Medicine 201594 e1879. (10.1097/MD.0000000000001879) PubMed DOI PMC
Perdas E, Stawski R, Kaczka K, Zubrzycka M. Analysis of Let-7 family miRNA in plasma as potential predictive biomarkers of diagnosis for papillary thyroid cancer. Diagnostics 202010130. (10.3390/diagnostics10030130) PubMed DOI PMC
Li M, Song Q, Li H, Lou Y, Wang L. Circulating miR-25-3p and miR-451a may be potential biomarkers for the diagnosis of papillary thyroid carcinoma. PLoS ONE 201510 e0132403. (10.1371/journal.pone.0132403) PubMed DOI PMC
Perdas E, Stawski R, Nowak D, Zubrzycka M. The role of miRNA in papillary thyroid cancer in the context of miRNA Let-7 family. International Journal of Molecular Sciences 201617909. (10.3390/ijms17060909) PubMed DOI PMC
Yuan L, Zhai L, Qian L, Huang D, Ding Y, Xiang H, Liu X, Thompson JW, Liu J, He YHet al.Switching off IMMP2L signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. Cell Research 201828625–643. (10.1038/s41422-018-0043-5) PubMed DOI PMC
Kloth M, Goering W, Ribarska T, Arsov C, Sorensen KD, Schulz WA. The SNP rs6441224 influences transcriptional activity and prognostically relevant hypermethylation of RARRES1 in prostate cancer. International Journal of Cancer 2012131E897–E904. (10.1002/ijc.27628) PubMed DOI
Yanatatsaneejit P, Chalermchai T, Kerekhanjanarong V, Shotelersuk K, Supiyaphun P, Mutirangura A, Sriuranpong V. Promoter hypermethylation of CCNA1, RARRES1, and HRASLS3 in nasopharyngeal carcinoma. Oral Oncology 200844400–406. (10.1016/j.oraloncology.2007.05.008) PubMed DOI
Wilson CL, Sims AH, Howell A, Miller CJ, Clarke RB. Effects of oestrogen on gene expression in epithelium and stroma of normal human breast tissue. Endocrine-Related Cancer 200613617–628. (10.1677/erc.1.01165) PubMed DOI
Qu J, Liu L, Xu Q, Ren J, Xu Z, Dou H, Shen S, Hou Y, Mou Y, Wang T. CARD9 prevents lung cancer development by suppressing the expansion of myeloid-derived suppressor cells and IDO production. International Journal of Cancer 20191452225–2237. (10.1002/ijc.32355) PubMed DOI
Németh T, Futosi K, Weisinger J, Csorba K, Sitaru C, Ruland J, Mócsai A. A8.25 CARD9 mediates autoantibody-induced autoimmune diseases by linking the SYK tyrosine kinase to chemokine production. Annals of the Rheumatic Diseases 201473 (Supplement 1) A86. (10.1136/annrheumdis-2013-205124.199) DOI
Hoang T, Nguyen Ngoc Q, Lee J, Lee EK, Hwangbo Y, Kim J. Evaluation of modifiable factors and polygenic risk score in thyroid cancer. Endocrine-Related Cancer 202128481–494. (10.1530/ERC-21-0078) PubMed DOI