New Model of Ventral Spinal Cord Lesion Induced by Balloon Compression in Rats

. 2020 Nov 05 ; 8 (11) : . [epub] 20201105

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33167447

Grantová podpora
19-10365S Grantová Agentura České Republiky
CZ.02.1.01/0.0./0.0/15_003/0000419 Operational Programme Research, Development and Education in the framework of the project "Center of Reconstructive Neuroscience"
WFL-UK-008-15 Wings for Life
MR/R004544/1 Medical Research Council - United Kingdom
NRB119 International Spinal Research Trust
MR/S011110/1 Medical Research Council - United Kingdom
MR/R004463/1 Medical Research Council - United Kingdom

Odkazy

PubMed 33167447
PubMed Central PMC7694490
DOI 10.3390/biomedicines8110477
PII: biomedicines8110477
Knihovny.cz E-zdroje

Despite the variety of experimental models of spinal cord injury (SCI) currently used, the model of the ventral compression cord injury, which is commonly seen in humans, is very limited. Ventral balloon compression injury reflects the common anatomical mechanism of a human lesion and has the advantage of grading the injury severity by controlling the inflated volume of the balloon. In this study, ventral compression of the SCI was performed by the anterior epidural placement of the balloon of a 2F Fogarty's catheter, via laminectomy, at the level of T10. The balloon was rapidly inflated with 10 or 15 μL of saline and rested in situ for 5 min. The severity of the lesion was assessed by behavioral and immunohistochemical tests. Compression with the volume of 15 μL resulted in severe motor and sensory deficits represented by the complete inability to move across a horizontal ladder, a final Basso, Beattie and Bresnahan (BBB) score of 7.4 and a decreased withdrawal time in the plantar test (11.6 s). Histology and immunohistochemistry revealed a significant loss of white and gray matter with a loss of motoneuron, and an increased size of astrogliosis. An inflation volume of 10 μL resulted in a mild transient deficit. There are no other balloon compression models of ventral spinal cord injury. This study provided and validated a novel, easily replicable model of the ventral compression SCI, introduced by an inflated balloon of Fogarty´s catheter. For a severe incomplete deficit, an inflated volume should be maintained at 15 μL.

Zobrazit více v PubMed

Hachem L.D., Ahuja C.S., Fehlings M.G. Assessment and management of acute spinal cord injury: From point of injury to rehabilitation. J. Spinal Cord Med. 2017;40:665–675. doi: 10.1080/10790268.2017.1329076. PubMed DOI PMC

Machova Urdzikova L., Karova K., Ruzicka J., Kloudova A., Shannon C., Dubisova J., Murali R., Kubinova S., Sykova E., Jhanwar-Uniyal M., et al. The Anti-Inflammatory Compound Curcumin Enhances Locomotor and Sensory Recovery after Spinal Cord Injury in Rats by Immunomodulation. Int. J. Mol. Sci. 2016;17:49. doi: 10.3390/ijms17010049. PubMed DOI PMC

Gonzalez R., Hickey M.J., Espinosa J.M., Nistor G., Lane T.E., Keirstead H.S. Therapeutic neutralization of CXCL10 decreases secondary degeneration and functional deficit after spinal cord injury in mice. Regen. Med. 2007;2:771–783. doi: 10.2217/17460751.2.5.771. PubMed DOI

Lima R., Monteiro S., Lopes J.P., Barradas P., Vasconcelos N.L., Gomes E.D., Assuncao-Silva R.C., Teixeira F.G., Morais M., Sousa N., et al. Systemic Interleukin-4 Administration after Spinal Cord Injury Modulates Inflammation and Promotes Neuroprotection. Pharmaceuticals. 2017;10:83. doi: 10.3390/ph10040083. PubMed DOI PMC

Krupa P., Svobodova B., Dubisova J., Kubinova S., Jendelova P., Machova Urdzikova L. Nano-formulated curcumin (Lipodisq) modulates the local inflammatory response, reduces glial scar and preserves the white matter after spinal cord injury in rats. Neuropharmacology. 2019;155:54–64. doi: 10.1016/j.neuropharm.2019.05.018. PubMed DOI

Dumont C.M., Margul D.J., Shea L.D. Tissue Engineering Approaches to Modulate the Inflammatory Milieu following Spinal Cord Injury. Cells Tissues Organs. 2016;202:52–66. doi: 10.1159/000446646. PubMed DOI PMC

Krupa P., Vackova I., Ruzicka J., Zaviskova K., Dubisova J., Koci Z., Turnovcova K., Urdzikova L.M., Kubinova S., Rehak S., et al. The Effect of Human Mesenchymal Stem Cells Derived from Wharton’s Jelly in Spinal Cord Injury Treatment Is Dose-Dependent and Can Be Facilitated by Repeated Application. Int. J. Mol. Sci. 2018;19:1503. doi: 10.3390/ijms19051503. PubMed DOI PMC

Zhao X.M., He X.Y., Liu J., Xu Y., Xu F.F., Tan Y.X., Zhang Z.B., Wang T.H. Neural Stem Cell Transplantation Improves Locomotor Function in Spinal Cord Transection Rats Associated with Nerve Regeneration and IGF-1 R Expression. Cell Transplant. 2019;28:1197–1211. doi: 10.1177/0963689719860128. PubMed DOI PMC

Li N., Leung G.K. Oligodendrocyte Precursor Cells in Spinal Cord Injury: A Review and Update. BioMed Res. Int. 2015;2015:235195. doi: 10.1155/2015/235195. PubMed DOI PMC

Ruzicka J., Machova-Urdzikova L., Gillick J., Amemori T., Romanyuk N., Karova K., Zaviskova K., Dubisova J., Kubinova S., Murali R., et al. A Comparative Study of Three Different Types of Stem Cells for Treatment of Rat Spinal Cord Injury. Cell Transplant. 2017;26:585–603. doi: 10.3727/096368916X693671. PubMed DOI PMC

Choi J.S., Leem J.W., Lee K.H., Kim S.S., Suh-Kim H., Jung S.J., Kim U.J., Lee B.H. Effects of human mesenchymal stem cell transplantation combined with polymer on functional recovery following spinal cord hemisection in rats. Korean J. Physiol. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol. 2012;16:405–411. doi: 10.4196/kjpp.2012.16.6.405. PubMed DOI PMC

Lynskey J.V., Sandhu F.A., Dai H.N., McAtee M., Slotkin J.R., MacArthur L., Bregman B.S. Delayed intervention with transplants and neurotrophic factors supports recovery of forelimb function after cervical spinal cord injury in adult rats. J. Neurotrauma. 2006;23:617–634. doi: 10.1089/neu.2006.23.617. PubMed DOI

Tsai E.C., Dalton P.D., Shoichet M.S., Tator C.H. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Biomaterials. 2006;27:519–533. doi: 10.1016/j.biomaterials.2005.07.025. PubMed DOI

Brock J.H., Rosenzweig E.S., Blesch A., Moseanko R., Havton L.A., Edgerton V.R., Tuszynski M.H. Local and remote growth factor effects after primate spinal cord injury. J. Neurosci. 2010;30:9728–9737. doi: 10.1523/JNEUROSCI.1924-10.2010. PubMed DOI PMC

Zhang H., Wu F., Kong X., Yang J., Chen H., Deng L., Cheng Y., Ye L., Zhu S., Zhang X. Nerve growth factor improves functional recovery by inhibiting endoplasmic reticulum stress-induced neuronal apoptosis in rats with spinal cord injury. J. Transl. Med. 2014;12:130. doi: 10.1186/1479-5876-12-130. PubMed DOI PMC

Ansorena E., De Berdt P., Ucakar B., Simón-Yarza T., Jacobs D., Schakman O., Jankovski A., Deumens R., Blanco-Prieto M.J., Préat V. Injectable alginate hydrogel loaded with GDNF promotes functional recovery in a hemisection model of spinal cord injury. Int. J. Pharm. 2013;455:148–158. doi: 10.1016/j.ijpharm.2013.07.045. PubMed DOI

Ichiyama R., Gerasimenko Y.P., Zhong H., Roy R., Edgerton V.R. Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci. Lett. 2005;383:339–344. doi: 10.1016/j.neulet.2005.04.049. PubMed DOI

Lavrov I., Musienko P.E., Selionov V.A., Zdunowski S., Roy R.R., Edgerton V.R., Gerasimenko Y. Activation of spinal locomotor circuits in the decerebrated cat by spinal epidural and/or intraspinal electrical stimulation. Brain Res. 2015;1600:84–92. doi: 10.1016/j.brainres.2014.11.003. PubMed DOI

Krupa P., Siddiqui A.M., Grahn P.J., Islam R., Chen B.K., Madigan N.N., Windebank A.J., Lavrov I.A. The Translesional Spinal Network and Its Reorganization after Spinal Cord Injury. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry. 2020 doi: 10.1177/1073858420966276. PubMed DOI

Metz G.A., Curt A., van de Meent H., Klusman I., Schwab M.E., Dietz V. Validation of the weight-drop contusion model in rats: A comparative study of human spinal cord injury. J. Neurotrauma. 2000;17:1–17. doi: 10.1089/neu.2000.17.1. PubMed DOI

Tator C.H. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol. 1995;5:407–413. doi: 10.1111/j.1750-3639.1995.tb00619.x. PubMed DOI

Dumont R.J., Okonkwo D.O., Verma S., Hurlbert R.J., Boulos P.T., Ellegala D.B., Dumont A.S. Acute spinal cord injury, part I: Pathophysiologic mechanisms. Clin. Neuropharmacol. 2001;24:254–264. doi: 10.1097/00002826-200109000-00002. PubMed DOI

Fehlings M.G., Smith J.S., Kopjar B., Arnold P.M., Yoon S.T., Vaccaro A.R., Brodke D.S., Janssen M.E., Chapman J.R., Sasso R.C. Perioperative and delayed complications associated with the surgical treatment of cervical spondylotic myelopathy based on 302 patients from the AOSpine North America Cervical Spondylotic Myelopathy Study: Presented at the 2011 Spine Section Meeting. J. Neurosurg. Spine. 2012;16:425–432. doi: 10.3171/2012.1.SPINE11467. PubMed DOI

Scheff S.W., Rabchevsky A.G., Fugaccia I., Main J.A., Lumpp J.E., Jr. Experimental modeling of spinal cord injury: Characterization of a force-defined injury device. J. Neurotrauma. 2003;20:179–193. doi: 10.1089/08977150360547099. PubMed DOI

Gruner J.A. A monitored contusion model of spinal cord injury in the rat. J. Neurotrauma. 1992;9:123–128. doi: 10.1089/neu.1992.9.123. PubMed DOI

Vanicky I., Urdzikova L., Saganova K., Cizkova D., Galik J. A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J. Neurotrauma. 2001;18:1399–1407. doi: 10.1089/08977150152725687. PubMed DOI

Andrews E.M., Richards R.J., Yin F.Q., Viapiano M.S., Jakeman L.B. Alterations in chondroitin sulfate proteoglycan expression occur both at and far from the site of spinal contusion injury. Exp. Neurol. 2012;235:174–187. doi: 10.1016/j.expneurol.2011.09.008. PubMed DOI PMC

Amemori T., Ruzicka J., Romanyuk N., Jhanwar-Uniyal M., Sykova E., Jendelova P. Comparison of intraspinal and intrathecal implantation of induced pluripotent stem cell-derived neural precursors for the treatment of spinal cord injury in rats. Stem Cell Res. Ther. 2015;6:257. doi: 10.1186/s13287-015-0255-2. PubMed DOI PMC

Urdzikova L.M., Ruzicka J., LaBagnara M., Karova K., Kubinova S., Jirakova K., Murali R., Sykova E., Jhanwar-Uniyal M., Jendelova P. Human mesenchymal stem cells modulate inflammatory cytokines after spinal cord injury in rat. Int. J. Mol. Sci. 2014;15:11275–11293. doi: 10.3390/ijms150711275. PubMed DOI PMC

Su Y.F., Lin C.L., Lee K.S., Tsai T.H., Wu S.C., Hwang S.L., Chen S.C., Kwan A.L. A modified compression model of spinal cord injury in rats: Functional assessment and the expression of nitric oxide synthases. Spinal Cord. 2015;53:432–435. doi: 10.1038/sc.2014.245. PubMed DOI PMC

Chung W.H., Lee J.H., Chung D.J., Yang W.J., Lee A.J., Choi C.B., Chang H.S., Kim D.H., Chung H.J., Suh H.J., et al. Improved rat spinal cord injury model using spinal cord compression by percutaneous method. J. Vet. Sci. 2013;14:329–335. doi: 10.4142/jvs.2013.14.3.329. PubMed DOI PMC

Quertainmont R., Cantinieaux D., Botman O., Sid S., Schoenen J., Franzen R. Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions. PLoS ONE. 2012;7:e39500. doi: 10.1371/journal.pone.0039500. PubMed DOI PMC

Perrin F.E., Boniface G., Serguera C., Lonjon N., Serre A., Prieto M., Mallet J., Privat A. Grafted human embryonic progenitors expressing neurogenin-2 stimulate axonal sprouting and improve motor recovery after severe spinal cord injury. PLoS ONE. 2010;5:e15914. doi: 10.1371/journal.pone.0015914. PubMed DOI PMC

Bosch A., Stauffer E.S., Nickel V.L. Incomplete traumatic quadriplegia. A ten-year review. JAMA. 1971;216:473–478. doi: 10.1001/jama.1971.03180290049006. PubMed DOI

McKinley W., Santos K., Meade M., Brooke K. Incidence and outcomes of spinal cord injury clinical syndromes. J. Spinal Cord Med. 2007;30:215–224. doi: 10.1080/10790268.2007.11753929. PubMed DOI PMC

Adedigba J.A., Oremakinde A.A., Huang B., Maulucci C.M., Malomo A.O., Shokunbi T.M., Adeolu A.A. Preliminary Findings After Nonoperative Management of Traumatic Cervical Spinal Cord Injury on a Background of Degenerative Disc Disease: Providing Optimum Patient Care and Costs Saving in a Nigerian Setting. World Neurosurg. 2020;142:246–254. doi: 10.1016/j.wneu.2020.07.035. PubMed DOI

Pikija S., Mutzenbach J.S., Kunz A.B., Nardone R., Leis S., Deak I., McCoy M.R., Trinka E., Sellner J. Delayed Hospital Presentation and Neuroimaging in Non-surgical Spinal Cord Infarction. Front. Neurol. 2017;8:143. doi: 10.3389/fneur.2017.00143. PubMed DOI PMC

Kwiecien J.M., Dabrowski W., Dąbrowska-Bouta B., Sulkowski G., Oakden W., Kwiecien-Delaney C.J., Yaron J.R., Zhang L., Schutz L., Marzec-Kotarska B., et al. Prolonged inflammation leads to ongoing damage after spinal cord injury. PloS ONE. 2020;15:e0226584. doi: 10.1371/journal.pone.0226584. PubMed DOI PMC

Schucht P., Raineteau O., Schwab M.E., Fouad K. Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord. Exp. Neurol. 2002;176:143–153. doi: 10.1006/exnr.2002.7909. PubMed DOI

Schrimsher G.W., Reier P.J. Forelimb motor performance following dorsal column, dorsolateral funiculi, or ventrolateral funiculi lesions of the cervical spinal cord in the rat. Exp. Neurol. 1993;120:264–276. doi: 10.1006/exnr.1993.1060. PubMed DOI

Ijima Y., Furuya T., Koda M., Matsuura Y., Saito J., Kitamura M., Miyamoto T., Orita S., Inage K., Suzuki T., et al. Experimental rat model for cervical compressive myelopathy. Neuroreport. 2017;28:1239–1245. doi: 10.1097/WNR.0000000000000907. PubMed DOI PMC

Benzel E.C., Lancon J.A., Thomas M.M., Beal J.A., Hoffpauir G.M., Kesterson L. A new rat spinal cord injury model: A ventral compression technique. J. Spinal Disord. 1990;3:334–338. PubMed

al-Mefty O., Harkey H.L., Marawi I., Haines D.E., Peeler D.F., Wilner H.I., Smith R.R., Holaday H.R., Haining J.L., Russell W.F. Experimental chronic compressive cervical myelopathy. J. Neurosurg. 1993;79:550–561. doi: 10.3171/jns.1993.79.4.0550. PubMed DOI

Shinomiya K., Mutoh N., Furuya K. Study of experimental cervical spondylotic myelopathy. Spine. 1992;17:S383–S387. doi: 10.1097/00007632-199210001-00007. PubMed DOI

Lee J., Satkunendrarajah K., Fehlings M.G. Development and characterization of a novel rat model of cervical spondylotic myelopathy: The impact of chronic cord compression on clinical, neuroanatomical, and neurophysiological outcomes. J. Neurotrauma. 2012;29:1012–1027. doi: 10.1089/neu.2010.1709. PubMed DOI

Dhillon R.S., Parker J., Syed Y.A., Edgley S., Young A., Fawcett J.W., Jeffery N.D., Franklin R.J.M., Kotter M.R.N. Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy. Acta Neuropathol. Commun. 2016;4:89. doi: 10.1186/s40478-016-0359-7. PubMed DOI PMC

Urdzikova L., Vanicky I. Post-traumatic moderate systemic hyperthermia worsens behavioural outcome after spinal cord injury in the rat. Spinal Cord. 2006;44:113–119. doi: 10.1038/sj.sc.3101792. PubMed DOI

Basso D.M., Beattie M.S., Bresnahan J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma. 1995;12:1–21. doi: 10.1089/neu.1995.12.1. PubMed DOI

Metz G.A., Whishaw I.Q. The ladder rung walking task: A scoring system and its practical application. J. Vis. Exp. 2009 doi: 10.3791/1204. PubMed DOI PMC

May Z., Fouad K., Shum-Siu A., Magnuson D.S.K. Challenges of animal models in SCI research: Effects of pre-injury task-specific training in adult rats before lesion. Behav. Brain Res. 2015;291:26–35. doi: 10.1016/j.bbr.2015.04.058. PubMed DOI PMC

Ruzicka J., Urdzikova L.M., Svobodova B., Amin A.G., Karova K., Dubisova J., Zaviskova K., Kubinova S., Schmidt M., Jhanwar-Uniyal M., et al. Does combined therapy of curcumin and epigallocatechin gallate have a synergistic neuroprotective effect against spinal cord injury? Neural Regen. Res. 2018;13:119–127. PubMed PMC

Svobodova B., Kloudova A., Ruzicka J., Kajtmanova L., Navratil L., Sedlacek R., Suchy T., Jhanwar-Uniyal M., Jendelova P., Machova Urdzikova L. The effect of 808 nm and 905 nm wavelength light on recovery after spinal cord injury. Sci. Rep. 2019;9:7660. doi: 10.1038/s41598-019-44141-2. PubMed DOI PMC

Ruzicka J., Urdzikova L.M., Kloudova A., Amin A.G., Vallova J., Kubinova S., Schmidt M.H., Jhanwar-Uniyal M., Jendelova P. Anti-inflammatory compound curcumin and mesenchymal stem cells in the treatment of spinal cord injury in rats. Acta Neurobiol. Exp. 2018;78:358–374. doi: 10.21307/ane-2018-035. PubMed DOI

Amemori T., Romanyuk N., Jendelova P., Herynek V., Turnovcova K., Prochazka P., Kapcalova M., Cocks G., Price J., Sykova E. Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat. Stem Cell Res. Ther. 2013;4:68. doi: 10.1186/scrt219. PubMed DOI PMC

Lee D.H., Lee J.K. Animal models of axon regeneration after spinal cord injury. Neurosci. Bull. 2013;29:436–444. doi: 10.1007/s12264-013-1365-4. PubMed DOI PMC

Kwon B.K., Hillyer J., Tetzlaff W. Translational research in spinal cord injury: A survey of opinion from the SCI community. J. Neurotrauma. 2010;27:21–33. doi: 10.1089/neu.2009.1048. PubMed DOI

Young W. Animal Models of Acute Neurological Injuries. Springer; Berlin/Heidelberg, Germany: 2009. MASCIS spinal cord contusion model; pp. 411–421.

Khan T., Havey R.M., Sayers S.T., Patwardhan A., King W.W. Animal models of spinal cord contusion injuries. Lab. Anim. Sci. 1999;49:161–172. PubMed

Talac R., Friedman J.A., Moore M.J., Lu L., Jabbari E., Windebank A.J., Currier B.L., Yaszemski M.J. Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies. Biomaterials. 2004;25:1505–1510. doi: 10.1016/S0142-9612(03)00497-6. PubMed DOI

Krishna V., Andrews H., Jin X., Yu J., Varma A., Wen X., Kindy M. A contusion model of severe spinal cord injury in rats. J. Vis. Exp. 2013 doi: 10.3791/50111. PubMed DOI PMC

Rivlin A., Tator C. Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg. Neurol. 1978;10:38–43. PubMed

Aslan A., Cemek M., Eser O., Altunbaş K., Buyukokuroglu M.E., Cosar M., Baş O., Ela Y., Fidan H. Does dexmedetomidine reduce secondary damage after spinal cord injury? An experimental study. Eur. Spine J. 2009;18:336. doi: 10.1007/s00586-008-0872-x. PubMed DOI PMC

Fukuda S., Nakamura T., Kishigami Y., Endo K., Azuma T., Fujikawa T., Tsutsumi S., Shimizu Y. New canine spinal cord injury model free from laminectomy. Brain Res. Protoc. 2005;14:171–180. doi: 10.1016/j.brainresprot.2005.01.001. PubMed DOI

Nesathurai S., Graham W.A., Mansfield K., Magill D., Sehgal P., Westmoreland S.V., Prusty S., Rosene D.L., Sledge J.B. Model of traumatic spinal cord injury in Macaca fascicularis: Similarity of experimental lesions created by epidural catheter to human spinal cord injury. J. Med. Primatol. 2006;35:401–404. doi: 10.1111/j.1600-0684.2006.00162.x. PubMed DOI

Hukuda S., Wilson C.B. Experimental cervical myelopathy: Effects of compression and ischemia on the canine cervical cord. J. Neurosurg. 1972;37:631–652. doi: 10.3171/jns.1972.37.6.0631. PubMed DOI

Wolfla C.E., Snell B.E., Honeycutt J.H. Cervical ventral epidural pressure response to graded spinal canal compromise and spinal motion. Spine. 2004;29:1524–1529. doi: 10.1097/01.BRS.0000131442.87202.39. PubMed DOI

Šedý J., Zicha J., Kuneš J., Jendelová P., Syková E. Rapid but not slow spinal cord compression elicits neurogenic pulmonary edema in the rat. Physiol. Res. 2009;58:269–277. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...