The effect of 808 nm and 905 nm wavelength light on recovery after spinal cord injury

. 2019 May 21 ; 9 (1) : 7660. [epub] 20190521

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31113985
Odkazy

PubMed 31113985
PubMed Central PMC6529518
DOI 10.1038/s41598-019-44141-2
PII: 10.1038/s41598-019-44141-2
Knihovny.cz E-zdroje

We investigated the effect of a Multiwave Locked System laser (with a simultaneous 808 nm continuous emission and 905 nm pulse emission) on the spinal cord after spinal cord injury (SCI) in rats. The functional recovery was measured by locomotor tests (BBB, Beam walking, MotoRater) and a sensitivity test (Plantar test). The locomotor tests showed a significant improvement of the locomotor functions of the rats after laser treatment from the first week following lesioning, compared to the controls. The laser treatment significantly diminished thermal hyperalgesia after SCI as measured by the Plantar test. The atrophy of the soleus muscle was reduced in the laser treated rats. The histopathological investigation showed a positive effect of the laser therapy on white and gray matter sparing. Our data suggests an upregulation of M2 macrophages in laser treated animals by the increasing number of double labeled CD68+/CD206+ cells in the cranial and central parts of the lesion, compared to the control animals. A shift in microglial/macrophage polarization was confirmed by gene expression analysis by significant mRNA downregulation of Cd86 (marker of inflammatory M1), and non-significant upregulation of Arg1 (marker of M2). These results demonstrated that the combination of 808 nm and 905 nm wavelength light is a promising non-invasive therapy for improving functional recovery and tissue sparing after SCI.

Zobrazit více v PubMed

Finnerup NB, Johannesen IL, Fuglsang-Frederiksen A, Bach FW, Jensen TS. Sensory function in spinal cord injury patients with and without central pain. Brain. 2003;126:57–70. doi: 10.1093/brain/awg007. PubMed DOI

Battaglino RA, Lazzari AA, Garshick E, Morse LR. Spinal cord injury-induced osteoporosis: pathogenesis and emerging therapies. Current osteoporosis reports. 2012;10:278–285. doi: 10.1007/s11914-012-0117-0. PubMed DOI PMC

Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res. 2015;1619:1–11. doi: 10.1016/j.brainres.2014.12.045. PubMed DOI

Stout RD, Suttles J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol. 2004;76:509–513. doi: 10.1189/jlb.0504272. PubMed DOI PMC

Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–964. doi: 10.1038/nri1733. PubMed DOI

Morganti JM, Riparip LK, Rosi S. Call Off the Dog(ma): M1/M2 Polarization Is Concurrent following Traumatic Brain Injury. PLoS One. 2016;11:e0148001. doi: 10.1371/journal.pone.0148001. PubMed DOI PMC

Kigerl KA, et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. 2009;29:13435–13444. doi: 10.1523/JNEUROSCI.3257-09.2009. PubMed DOI PMC

David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci. 2011;12:388–399. doi: 10.1038/nrn3053. PubMed DOI

Graumann U, Ritz MF, Hausmann O. Necessity for re-vascularization after spinal cord injury and the search for potential therapeutic options. Curr Neurovasc Res. 2011;8:334–341. doi: 10.2174/156720211798121007. PubMed DOI

McKenzie AL, Hall JJ, Aihara N, Fukuda K, Noble LJ. Immunolocalization of endothelin in the traumatized spinal cord: relationship to blood-spinal cord barrier breakdown. J Neurotrauma. 1995;12:257–268. doi: 10.1089/neu.1995.12.257. PubMed DOI

Mautes AE, Weinzierl MR, Donovan F, Noble LJ. Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys Ther. 2000;80:673–687. PubMed

Kundi S, Bicknell R, Ahmed Z. The role of angiogenic and wound-healing factors after spinal cord injury in mammals. Neurosci Res. 2013;76:1–9. doi: 10.1016/j.neures.2013.03.013. PubMed DOI

Sullivan PG, Krishnamurthy S, Patel SP, Pandya JD, Rabchevsky AG. Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J Neurotrauma. 2007;24:991–999. doi: 10.1089/neu.2006.0242. PubMed DOI

Yu WR, Liu T, Fehlings TK, Fehlings MG. Involvement of mitochondrial signaling pathways in the mechanism of Fas-mediated apoptosis after spinal cord injury. Eur J Neurosci. 2009;29:114–131. doi: 10.1111/j.1460-9568.2008.06555.x. PubMed DOI

Li G, et al. Mitochondrial Division Inhibitor 1 Ameliorates Mitochondrial Injury, Apoptosis, and Motor Dysfunction After Acute Spinal Cord Injury in Rats. Neurochem Res. 2015;40:1379–1392. doi: 10.1007/s11064-015-1604-3. PubMed DOI

Mason MG, Nicholls P, Cooper CE. Re-evaluation of the near infrared spectra of mitochondrial cytochrome c oxidase: Implications for non invasive in vivo monitoring of tissues. Biochim Biophys Acta. 2014;1837:1882–1891. doi: 10.1016/j.bbabio.2014.08.005. PubMed DOI PMC

Lane N. Cell biology: power games. Nature. 2006;443:901–903. doi: 10.1038/443901a. PubMed DOI

Brown GC. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta. 2001;1504:46–57. doi: 10.1016/S0005-2728(00)00238-3. PubMed DOI

Moncada S, Erusalimsky JD. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol. 2002;3:214–220. doi: 10.1038/nrm762. PubMed DOI

Karu TI, Pyatibrat LV, Afanasyeva NI. A novel mitochondrial signaling pathway activated by visible-to-near infrared radiation. Photochem Photobiol. 2004;80:366–372. doi: 10.1562/2004-03-25-RA-123. PubMed DOI

Whelan HT, et al. Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Sur. 2001;19:305–314. doi: 10.1089/104454701753342758. PubMed DOI

Rochkind S, et al. Systemic Effects of Low-Power Laser Irradiation on the Peripheral and Central Nervous-System, Cutaneous Wounds, and Burns. Laser Surg Med. 1989;9:174–182. doi: 10.1002/lsm.1900090214. PubMed DOI

Demidova-Rice TN, Salomatina EV, Yaroslavsky AN, Herman IM, Hamblin MR. Low-level light stimulates excisional wound healing in mice. Laser Surg Med. 2007;39:706–715. doi: 10.1002/lsm.20549. PubMed DOI PMC

Geneva II. Photobiomodulation for the treatment of retinal diseases: a review. Int J Ophthalmol. 2016;9:145–152. doi: 10.18240/ijo.2016.01.24. PubMed DOI PMC

Silveira PCL, et al. Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury. Free Radical Res. 2016;50:503–513. doi: 10.3109/10715762.2016.1147649. PubMed DOI

Patrocinio-Silva TL, et al. The effects of low-level laser irradiation on bone tissue in diabetic rats. Lasers Med Sci. 2014;29:1357–1364. doi: 10.1007/s10103-013-1418-y. PubMed DOI

Hamblin, M. R. Photobiomodulation for Traumatic Brain Injury and Stroke. J Neurosci Res, 10.1002/jnr.24190 (2017). PubMed PMC

Oron A, et al. Low-level laser therapy applied transcranially to mice following traumatic brain injury significantly reduces long-term neurological deficits. Journal of Neurotrauma. 2007;24:651–656. doi: 10.1089/neu.2006.0198. PubMed DOI

Naeser MA, et al. Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study. J Neurotrauma. 2014;31:1008–1017. doi: 10.1089/neu.2013.3244. PubMed DOI PMC

Yang L, et al. Photobiomodulation therapy promotes neurogenesis by improving post-stroke local microenvironment and stimulating neuroprogenitor cells. Exp Neurol. 2018;299:86–96. doi: 10.1016/j.expneurol.2017.10.013. PubMed DOI PMC

Naeser MA, Hamblin MR. Potential for transcranial laser or LED therapy to treat stroke, traumatic brain injury, and neurodegenerative disease. Photomed Laser Surg. 2011;29:443–446. doi: 10.1089/pho.2011.9908. PubMed DOI PMC

De Taboada L, et al. Transcranial laser therapy attenuates amyloid-beta peptide neuropathology in amyloid-beta protein precursor transgenic mice. J Alzheimers Dis. 2011;23:521–535. doi: 10.3233/JAD-2010-100894. PubMed DOI

Byrnes KR, et al. Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med. 2005;36:171–185. doi: 10.1002/lsm.20143. PubMed DOI

Kim J, et al. Low-Level Laser Irradiation Improves Motor Recovery After Contusive Spinal Cord Injury in Rats. Tissue Eng Regen Med. 2017;14:57–64. doi: 10.1007/s13770-016-0003-4. PubMed DOI PMC

Wu X, et al. 810 nm Wavelength light: an effective therapy for transected or contused rat spinal cord. Lasers Surg Med. 2009;41:36–41. doi: 10.1002/lsm.20729. PubMed DOI

dos Reis FA, et al. Effect of laser therapy (660 nm) on recovery of the sciatic nerve in rats after injury through neurotmesis followed by epineural anastomosis. Laser Med Sci. 2009;24:741–747. doi: 10.1007/s10103-008-0634-3. PubMed DOI

Piva JADC, Abreu EMD, Silva VD, Nicolau RA. Effect of low-level laser therapy on the initial stages of tissue repair: basic principles. An Bras Dermatol. 2011;86:947–954. doi: 10.1590/S0365-05962011000500013. PubMed DOI

Vanicky I, Urdzikova L, Saganova K, Cizkova D, Galik J. A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J Neurotrauma. 2001;18:1399–1407. doi: 10.1089/08977150152725687. PubMed DOI

Paula AA, Nicolau RA, Lima MD, Salgado MAC, Cogo JC. Low-intensity laser therapy effect on the recovery of traumatic spinal cord injury. Laser Med Sci. 2014;29:1849–1859. doi: 10.1007/s10103-014-1586-4. PubMed DOI

Burke, D. A. & Magnuson, D. S. In T Animal Models of Acute Neurological Injuries IISpringer Protocols Handbooks 591–604 (2012).

Hu, D., Zhu, S. Y. & Potas, J. R. Red LED photobiomodulation reduces pain hypersensitivity and improves sensorimotor function following mild T10 hemicontusion spinal cord injury. J Neuroinflamm13 (2016). PubMed PMC

Veronez, S. et al. Effects of different fluences of low-level laser therapy in an experimental model of spinal cord injury in rats. Lasers Med Sci, 10.1007/s10103-016-2120-7 (2016). PubMed

Mandelbaum-Livnat MM, et al. Photobiomodulation Triple Treatment in Peripheral Nerve Injury: Nerve and Muscle Response. Photomed Laser Surg. 2016;34:638–645. doi: 10.1089/pho.2016.4095. PubMed DOI

Rochkind S, Shainberg A. Protective effect of laser phototherapy on acetylcholine receptors and creatine kinase activity in denervated muscle. Photomed Laser Surg. 2013;31:499–504. doi: 10.1089/pho.2013.3537. PubMed DOI

Burns AS, et al. Paralysis elicited by spinal cord injury evokes selective disassembly of neuromuscular synapses with and without terminal sprouting in ankle flexors of the adult rat. J Comp Neurol. 2007;500:116–133. doi: 10.1002/cne.21143. PubMed DOI

Medalha CC, et al. Low level laser therapy accelerates bone healing in spinal cord injured rats. Journal of photochemistry and photobiology. B, Biology. 2016;159:179–185. doi: 10.1016/j.jphotobiol.2016.03.041. PubMed DOI

Wong-Riley MT, et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem. 2005;280:4761–4771. doi: 10.1074/jbc.M409650200. PubMed DOI

Song JW, et al. Low-level laser facilitates alternatively activated macrophage/microglia polarization and promotes functional recovery after crush spinal cord injury in rats. Sci Rep. 2017;7:620. doi: 10.1038/s41598-017-00553-6. PubMed DOI PMC

von Leden RE, et al. 808 nm wavelength light induces a dose-dependent alteration in microglial polarization and resultant microglial induced neurite growth. Lasers Surg Med. 2013;45:253–263. doi: 10.1002/lsm.22133. PubMed DOI

Nykjaer A, et al. Sortilin is essential for proNGF-induced neuronal cell death. Nature. 2004;427:843–848. doi: 10.1038/nature02319. PubMed DOI

Jansen P, et al. Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nat Neurosci. 2007;10:1449–1457. doi: 10.1038/nn2000. PubMed DOI

Shu XQ, Mendell LM. Neurotrophins and hyperalgesia. Proceedings of the National Academy of Sciences of the United States of America. 1999;96:7693–7696. doi: 10.1073/pnas.96.14.7693. PubMed DOI PMC

Aras R, Barron AM, Pike CJ. Caspase activation contributes to astrogliosis. Brain Res. 2012;1450:102–115. doi: 10.1016/j.brainres.2012.02.056. PubMed DOI PMC

Herrera JJ, Nesic O, Narayana PA. Reduced vascular endothelial growth factor expression in contusive spinal cord injury. J Neurotrauma. 2009;26:995–1003. doi: 10.1089/neu.2008-0779. PubMed DOI PMC

Benton RL, Maddie MA, Gruenthal MJ, Hagg T, Whittemore SR. Neutralizing endogenous VEGF following traumatic spinal cord injury modulates microvascular plasticity but not tissue sparing or functional recovery. Curr Neurovasc Res. 2009;6:124–131. doi: 10.2174/156720209788185678. PubMed DOI PMC

Nesic O, et al. Vascular endothelial growth factor and spinal cord injury pain. J Neurotrauma. 2010;27:1793–1803. doi: 10.1089/neu.2010.1351. PubMed DOI PMC

Yoshida K, et al. Cytokine regulation of nerve growth factor-mediated cholinergic neurotrophic activity synthesized by astrocytes and fibroblasts. J Neurochem. 1992;59:919–931. doi: 10.1111/j.1471-4159.1992.tb08331.x. PubMed DOI

Wu X, Moges H, DeTaboada L, Anders J. Comparison of the effects of pulsed and continuous wave light on axonal regeneration in a rat model of spinal cord injury. Lasers Med Sci. 2012;27:525–528. doi: 10.1007/s10103-011-0983-1. PubMed DOI

Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12:1–21. doi: 10.1089/neu.1995.12.1. PubMed DOI

Goldstein LB. Effects of bilateral and unilateral locus coeruleus lesions on beam-walking recovery after subsequent unilateral sensorimotor cortex suction-ablation in the rat. Restorative neurology and neuroscience. 1997;11:55–63. doi: 10.3233/RNN-1997-111206. PubMed DOI

Zorner B, et al. Profiling locomotor recovery: comprehensive quantification of impairments after CNS damage in rodents. Nat Methods. 2010;7:701–708. doi: 10.1038/nmeth.1484. PubMed DOI

Broulik PD, Vondrova J, Ruzicka P, Sedlacek R, Zima T. The effect of chronic alcohol administration on bone mineral content and bone strength in male rats. Physiol Res. 2010;59:599–604. PubMed

Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone. 1993;14:595–608. doi: 10.1016/8756-3282(93)90081-K. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

New Model of Ventral Spinal Cord Lesion Induced by Balloon Compression in Rats

. 2020 Nov 05 ; 8 (11) : . [epub] 20201105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...