CHEK2p.I157T Mutation Is Associated with Increased Risk of Adult-Type Ovarian Granulosa Cell Tumors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35267514
PubMed Central
PMC8909001
DOI
10.3390/cancers14051208
PII: cancers14051208
Knihovny.cz E-zdroje
- Klíčová slova
- 1100delC, CHEK2, FOXL2, I157T, SF1, adult-type granulosa cell tumor, calretinin, granulosa cell tumor, inhibin, ovarian cancer,
- Publikační typ
- časopisecké články MeSH
Pathogenic germline mutations c.1100delC and p.I157T in the CHEK2 gene have been associated with increased risk of breast, colon, kidney, prostate, and thyroid cancers; however, no associations have yet been identified between these two most common European founder mutations of the CHEK2 gene and ovarian cancers of any type. Our review of 78 female heterozygous carriers of these mutations (age > 18 years) found strikingly higher proportion of adult-type granulosa cell tumors of the ovary (AGCTs) among ovarian cancers that developed in these women (~36%) compared to women from the general population (1.3%). Based on this finding, we performed a cross-sectional study that included 93 cases previously diagnosed with granulosa cell tumors, refined and validated their AGCT diagnosis through an IHC study, determined their status for the two CHEK2 mutations, and compared the prevalence of these mutations in the AGCT cases and reference populations. The prevalence ratios for the p.I157T mutation in the AGCT group relative to the global (PR = 26.52; CI95: 12.55−56.03) and European non-Finnish populations (PR = 24.55; CI95: 11.60−51.97) support an association between the CHEK2p.I157T mutation and AGCTs. These rare gynecologic tumors have not been previously associated with known risk factors and genetic predispositions. Furthermore, our results support the importance of the determination of the FOXL2p.C134W somatic mutation for accurate diagnosis of AGCTs and suggest a combination of IHC markers that can serve as a surrogate diagnostic marker to infer the mutational status of this FOXL2 allele.
Agel Nový Jíčín a s 741 01 Nový Jíčín Czech Republic
Bioptická Laboratoř s r o 326 00 Pilsen Czech Republic
Cytopathos s r o 831 03 Bratislava Slovakia
Georgia Institute of Technology School of Biological Sciences Atlanta GA 30332 USA
Zobrazit více v PubMed
Zannini L., Delia D., Buscemi G. CHK2 kinase in the DNA damage response and beyond. J. Mol. Cell Biol. 2014;6:442–457. doi: 10.1093/jmcb/mju045. PubMed DOI PMC
Stolarova L., Kleiblova P., Janatova M., Soukupova J., Zemankova P., Macurek L., Kleibl Z. CHEK2 germline variants in cancer predisposition: Stalemate rather than checkmate. Cells. 2020;9:2675. doi: 10.3390/cells9122675. PubMed DOI PMC
Cybulski C., Górski B., Huzarski T., Masojć B., Mierzejewski M., Dębniak T., Teodorczyk U., Byrski T., Gronwald J., Matyjasik J., et al. CHEK2 is a multiorgan cancer susceptibility gene. Am. J. Hum. Genet. 2004;75:1131–1135. doi: 10.1086/426403. PubMed DOI PMC
Leedom T.P., LaDuca H., McFarland R., Li S., Dolinsky J.S., Chao E.C. Breast cancer risk is similar for CHEK2 founder and non-founder mutation carriers. Cancer Genet. 2016;209:403–407. doi: 10.1016/j.cancergen.2016.08.005. PubMed DOI
Weischer M., Bojesen S.E., Ellervik C., Tybjærg-Hansen A., Nordestgaard B.G. CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: Meta-analyses of 26,000 patient cases and 27,000 controls. J. Clin. Oncol. 2008;26:542–548. doi: 10.1200/JCO.2007.12.5922. PubMed DOI
Weischer M., Nordestgaard B.G., Pharoah P., Bolla M.K., Nevanlinna H., Veer L.J.V., Garcia-Closas M., Hopper J.L., Hall P., Andrulis I.L., et al. CHEK2*1100delC heterozygosity in women with breast cancer associated with early death, breast cancer–specific death, and increased risk of a second breast cancer. J. Clin. Oncol. 2012;30:4308–4316. doi: 10.1200/JCO.2012.42.7336. PubMed DOI PMC
Fletcher O., Johnson N., dos Santos Silva I., Kilpivaara O., Aittomäki K., Blomqvist C., Nevanlinna H., Wasielewski M., Meijers-Heijerboer H., Broeks A., et al. Family history, genetic testing, and clinical risk prediction: Pooled analysis of CHEK2*1100delC in 1828 bilateral breast cancers and 7030 controls. Cancer Epidemiol. Biomark. Prev. 2009;18:230–234. doi: 10.1158/1055-9965.EPI-08-0416. PubMed DOI PMC
Muranen T.A., Blomqvist C., Dörk T., Jakubowska A., Heikkilä P., Fagerholm R., Greco D., Aittomäki K., Bojesen S.E., Shah M., et al. Patient survival and tumor characteristics associated with CHEK2: p.I157T—Findings from the Breast Cancer Association Consortium. Breast Cancer Res. 2016;18:98. doi: 10.1186/s13058-016-0758-5. PubMed DOI PMC
Sutcliffe E.G., Stettner A.R., Miller S.A., Solomon S.R., Marshall M.L., Roberts M.E., Susswein L.R., Arvai K.J., Klein R.T., Murphy P.D., et al. Differences in cancer prevalence among CHEK2 carriers identified via multi-gene panel testing. Cancer Genet. 2020;246–247:12–17. doi: 10.1016/j.cancergen.2020.07.001. PubMed DOI
Alexiadis M., Rowley S.M., Chu S., Leung D.T., Stewart C.J., Amarasinghe K.C., Campbell I.G., Fuller P.J. Mutational landscape of ovarian adult granulosa cell tumors from whole exome and targeted TERT promoter sequencing. Mol. Cancer Res. 2018;17:177–185. doi: 10.1158/1541-7786.MCR-18-0359. PubMed DOI
Van Dongen J.J.M., Langerak A., Brüggemann M., Evans P.A.S., Hummel M., Lavender F., Delabesse E., Davi F., Schuuring E., Garcia-Sanz R., et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 concerted action BMH4-CT98-3936. Leukemia. 2003;17:2257–2317. doi: 10.1038/sj.leu.2403202. PubMed DOI
National Center for Biotechnology Information . Basic Local Alignment Search Tool (BLAST) National Center for Biotechnology Information; Bethesda, MD, USA: 1990.
The Genome Aggregation Database. [(accessed on 22 October 2021)]. Available online: https://gnomad.broadinstitute.org/about.
Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alfoldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–443. doi: 10.1038/s41586-020-2308-7. PubMed DOI PMC
VassarStats Website for Statistical Computation. [(accessed on 22 October 2021)]. Available online: http://vassarstats.net/
Sullivan K.M., Dean A., Soe M.M. OpenEpi: A web-based epidemiologic and statistical calculator for public health. Public Health Rep. 2009;124:471–474. doi: 10.1177/003335490912400320. PubMed DOI PMC
OpenEpi Open-Source Epidemiologic Statistics for Public Health, Version 3.01, Updated. Apr 6, 2013. [(accessed on 22 October 2021)]. Available online: https://www.openepi.com/Menu/OE_Menu.htm.
StatPages The Interactive Statistical Pages. [(accessed on 22 October 2021)]. Available online: https://statpages.info/index.html.
Shah S.P., Köbel M., Senz J., Morin R.D., Clarke B.A., Wiegand K.C., Leung G., Zayed A., Mehl E., Kalloger S.E., et al. Mutation of FOXL2 in granulosa-cell tumors of the ovary. N. Engl. J. Med. 2009;360:2719–2729. doi: 10.1056/NEJMoa0902542. PubMed DOI
Kottarathil V.D., Antony M.A., Nair I.R., Pavithran K. Recent advances in granulosa cell tumor ovary: A review. Indian J. Surg. Oncol. 2012;4:37–47. doi: 10.1007/s13193-012-0201-z. PubMed DOI PMC
D’Angelo E., Mozos A., Nakayama D., Espinosa I., Catasus L., Muñoz J., Prat J., Mu J. Prognostic significance of FOXL2 mutation and mRNA expression in adult and juvenile granulosa cell tumors of the ovary. Mod. Pathol. 2011;24:1360–1367. doi: 10.1038/modpathol.2011.95. PubMed DOI
Schumer S.T., Cannistra S.A. Granulosa cell tumor of the ovary. J. Clin. Oncol. 2003;21:1180–1189. doi: 10.1200/JCO.2003.10.019. PubMed DOI
Young R.H., Dickersin G.R., Scully R.E. Juvenile granulosa cell tumor of the ovary: A clinicopathological analysis of 125 cases. Am. J. Surg. Pathol. 1984;8:575–596. doi: 10.1097/00000478-198408000-00002. PubMed DOI
Shim S.-H., Lee S.J., Kim D.-Y., Kim J., Kim S.-N., Kang S.-B., Kim J.-H., Kim Y.-M., Kim Y.-T., Nam J.-H. A long-term follow-up study of 91 cases with ovarian granulosa cell tumors. Anticancer Res. 2014;34:1001–1010. PubMed
McConechy M.K., Färkkilä A., Horlings H.M., Talhouk A., Unkila-Kallio L., van Meurs H.S., Yang W., Rozenberg N., Andersson N., Zaby K., et al. Molecularly defined adult granulosa cell tumor of the ovary: The clinical phenotype. JNCI J. Natl. Cancer Inst. 2016;108:djw134. doi: 10.1093/jnci/djw134. PubMed DOI PMC
Jamieson S., Fuller P.J. Molecular pathogenesis of granulosa cell tumors of the ovary. Endocr. Rev. 2012;33:109–144. doi: 10.1210/er.2011-0014. PubMed DOI
Kim M.S., Hur S.Y., Yoo N.J., Lee S.H. Mutational analysis of FOXL2 codon 134 in granulosa cell tumour of ovary and other human cancers. J. Pathol. 2010;221:147–152. doi: 10.1002/path.2688. PubMed DOI
Berman J.J. Neoplasms: Principles of Development and Diversity. Jones & Bartlett Learning; Burlington, MA, USA: 2009.
Bryk S., Pukkala E., Martinsen J.I., Unkila-Kallio L., Tryggvadottir L., Sparén P., Kjærheim K., Weiderpass E., Riska A. Incidence and occupational variation of ovarian granulosa cell tumours in Finland, Iceland, Norway and Sweden during 1953–2012: A longitudinal cohort study. BJOG. 2016;124:143–149. doi: 10.1111/1471-0528.13949. PubMed DOI
SEER Program Incidence—SEER Research Data, 13 Registries, November 2020 Sub (1992–2018)—Linked to County Attributes—Time Dependent (1990–2018) Income/Rurality, 1969–2019 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, Released April 2021, Based on the November 2020 Submission. [(accessed on 18 January 2022)]; Available online: www.seer.cancer.gov.
Howe K.L., Achuthan P., Allen J., Alvarez-Jarreta J., Ridwan Amode M., Armean I.M., Azov A.G., Bennet R., Bhai J., Billis K., et al. Ensembl 2021. Nucleic Acids Res. 2021;49:D884–D891. doi: 10.1093/nar/gkaa942. PubMed DOI PMC
Boyce E., Costaggini I., Vitonis A., Feltmate C., Muto M., Berkowitz R., Cramer D., Horowitz N. The epidemiology of ovarian granulosa cell tumors: A case-control study. Gynecol. Oncol. 2009;115:221–225. doi: 10.1016/j.ygyno.2009.06.040. PubMed DOI
Nizialek E., Lotan T.L., Isaacs W.B., Yegnasubramanian S., Paller C.J., Antonarakis E.S. The somatic mutation landscape of germline CHEK2-altered prostate cancer. J. Clin. Oncol. 2021;39:5084. doi: 10.1200/JCO.2021.39.15_suppl.5084. DOI
Benayoun B.A., Georges A.B., L’Hôte D., Andersson N., Dipietromaria A., Todeschini A.-L., Caburet S., Bazin C., Anttonen M., Veitia R.A. Transcription factor FOXL2 protects granulosa cells from stress and delays cell cycle: Role of its regulation by the SIRT1 deacetylase. Hum. Mol. Genet. 2011;20:1673–1686. doi: 10.1093/hmg/ddr042. PubMed DOI