Mitochondrially targeted α-tocopheryl succinate is antiangiogenic: potential benefit against tumor angiogenesis but caution against wound healing
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
GM69589
NIGMS NIH HHS - United States
GM77185
NIGMS NIH HHS - United States
NS42617
NINDS NIH HHS - United States
PubMed
21902599
PubMed Central
PMC3201633
DOI
10.1089/ars.2011.4192
Knihovny.cz E-zdroje
- MeSH
- alfa-tokoferol analogy a deriváty farmakologie terapeutické užití MeSH
- apoptóza účinky léků MeSH
- buněčné linie MeSH
- endoteliální buňky účinky léků MeSH
- hojení ran účinky léků MeSH
- inhibitory angiogeneze chemie farmakologie terapeutické užití MeSH
- lidé MeSH
- mitochondriální DNA metabolismus MeSH
- mitochondrie účinky léků MeSH
- modely nemocí na zvířatech MeSH
- myši transgenní MeSH
- myši MeSH
- nádory krevní zásobení farmakoterapie MeSH
- patologická angiogeneze farmakoterapie MeSH
- proliferace buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- alfa-tokoferol MeSH
- inhibitory angiogeneze MeSH
- mitochondriální DNA MeSH
AIMS: A plausible strategy to reduce tumor progress is the inhibition of angiogenesis. Therefore, agents that efficiently suppress angiogenesis can be used for tumor suppression. We tested the antiangiogenic potential of a mitochondrially targeted analog of α-tocopheryl succinate (MitoVES), a compound with high propensity to induce apoptosis. RESULTS: MitoVES was found to efficiently kill proliferating endothelial cells (ECs) but not contact-arrested ECs or ECs deficient in mitochondrial DNA, and suppressed angiogenesis in vitro by inducing accumulation of reactive oxygen species and induction of apoptosis in proliferating/angiogenic ECs. Resistance of arrested ECs was ascribed, at least in part, to the lower mitochondrial inner transmembrane potential compared with the proliferating ECs, thus resulting in the lower level of mitochondrial uptake of MitoVES. Shorter-chain homologs of MitoVES were less efficient in angiogenesis inhibition, thus suggesting a molecular mechanism of its activity. Finally, MitoVES was found to suppress HER2-positive breast carcinomas in a transgenic mouse as well as inhibit tumor angiogenesis. The antiangiogenic efficacy of MitoVES was corroborated by its inhibitory activity on wound healing in vivo. INNOVATION AND CONCLUSION: We conclude that MitoVES, a mitochondrially targeted analog of α-tocopheryl succinate, is an efficient antiangiogenic agent of potential clinical relevance, exerting considerably higher activity than its untargeted counterpart. MitoVES may be helpful against cancer but may compromise wound healing.
Zobrazit více v PubMed
Albini A. Marchisone C. Del Grosso F. Benelli R. Masiello L. Tacchetti C. Bono M. Ferrantini M. Rozera C. Truini M. Belardelli F. Santi L. Noonan DM. Inhibition of angiogenesis and vascular tumor growth by interferon-producing cells: a gene therapy approach. Am J Pathol. 2000;156:1381–1393. PubMed PMC
Biswas S. Roy S. Banerjee J. Hussain SR. Khanna S. Meenakshisundaram G. Kuppusamy P. Friedman A. Sen CK. Hypoxia inducible microRNA 210 attenuates keratinocyte proliferation and impairs closure in a murine model of ischemic wounds. Proc Natl Acad Sci U S A. 2010;107:6976–6981. PubMed PMC
Cross MJ. Claesson-Walsh L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 2001;22:201–207. PubMed
De Pinto V. Prezioso G. Thinnes F. Link TA. Palmieri F. Peptide-specific antibodies and proteases as probes of the transmembrane topology of the bovine heart mitochondrial porin. Biochemistry. 1991;30:10191–10200. PubMed
Don AS. Kisker O. Dilda P. Donoghue N. Zhao X. Decollogne S. Creighton B. Flynn E. Folkman J. Hogg PJ. A peptide trivalent arsenical inhibits tumor angiogenesis by perturbing mitochondrial function in angiogenic endothelial cells. Cancer Cell. 2003;3:497–509. PubMed
Dong LF. Freeman R. Liu J. Zobalova R. Marin-Hernandez A. Stantic M. Rohlena J. Rodriguez-Enriquez S. Valis K. Butcher B. Goodwin J. Brunk UT. Witting PK. Moreno-Sanchez R. Scheffler IE. Ralph SJ. Neuzil J. Suppression of tumour growth in vivo by the mitocan α-tocopheryl succinate requires respiratory complex II. Clin Cancer Res. 2009;15:1593–1600. PubMed
Dong LF. Jameson VJA. Tilly D. Cerny J. Mahdavian E. Marín-Hernández A. Hernández-Esquivel L. Rodríguez-Enríquez S. Witting PK. Stantic B. Rohlena J. Truksa J. Kluckova K. Dyason JC. Salvatore BA. Moreno-Sánchez R. Coster MJ. Ralph SJ. Smith RAJ. Neuzil J. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem. 2011;286:3717–3728. PubMed PMC
Dong LF. Jameson VJA. Tilly D. Prochazka L. Rohlena J. Valis K. Truksa J. Zobalova R. Mahdavian E. Kluckova K. Stantic M. Stursa J. Wang XF. Freeman R. Witting PK. Norberg E. Goodwin J. Salvatore BA. Novotna J. Turanek J. Ledvina M. Hozak P. Zhivotovsky B. Coster MJ. Ralph SJ. Smith RAJ. Neuzil J. Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: A new paradigm of efficient anti-cancer therapy. Free Radic Biol Med. 2011;50:1546–1555. PubMed
Dong LF. Low P. Dyason J. Wang XF. Prochazka L. Witting PK. Freeman R. Swettenham E. Valis K. Liu J. Zobalova R. Turanek J. Spitz DR. Domann FE. Scheffler IE. Ralph SJ. Neuzil J. α-Tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene. 2008;27:4324–4335. PubMed PMC
Dong LF. Swettenham E. Eliasson J. Wang XF. Gold M. Medunic Y. Stantic M. Low P. Prochazka L. Witting PK. Turanek J. Akporiaye ET. Ralph SJ. Neuzil J. Vitamin E analogs inhibit angiogenesis by selective apoptosis induction in proliferating endothelial cells: The role of oxidative stress. Cancer Res. 2007;67:11906–11913. PubMed
Edgell CJ. McDonald CC. Graham JB. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci U S A. 1983;80:3734–3737. PubMed PMC
Fantin VR. Leder P. Mitochondriotoxic compounds for cancer therapy. Oncogene. 2006;5:4787–4797. PubMed
Folkman J. Angiogenesis. Annu Rev Med. 2006;57:1–18. PubMed
Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6:273–286. PubMed
Folkman J. Shing Y. Angiogenesis. J Biol Chem. 1992;267:10931–10934. PubMed
Fulda S. Galluzzi L. Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov. 2010;9:447–464. PubMed
Gane EJ. Orr DW. Keogh GF. Gibson M. Lockhart MM. Frampton CM. Taylor KM. Smith RA. Murphy MP. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 2010;30:1019–1026. PubMed
Gogvadze V. Orrenius S. Zhivotovsky B. Mitochondria in cancer cells: what is so special about them? Trends Cell Biol. 2008;18:165–173. PubMed
Guy CT. Webster MA. Schaller M. Parsons TJ. Cardiff RD. Muller WJ. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci U S A. 1992;89:1078–1082. PubMed PMC
Jemal A. Siegel R. Ward E. Hao Y. Xu J. Thun MJ. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300. PubMed
Kelso GF. Porteous CM. Coulter CV. Hughes G. Porteous WK. Ledgerwood EC. Smith RA. Murphy MP. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem. 2001;276:4588–4596. PubMed
Malafa MP. Fokum FD. Andoh J. Neitzel LT. Bandyopadhyay S. Zhan R. Iiizumi M. Furuta E. Horvath E. Watabe K. Vitamin E succinate suppresses prostate tumor growth by inducing apoptosis. Int J Cancer. 2006;118:2441–2447. PubMed
Malafa MP. Fokum FD. Mowlavi A. Abusief M. King M. Vitamin E inhibits melanoma growth in mice. Surgery. 2002;131:85–91. PubMed
Moreno-Sánchez R. Rodríguez-Enríquez S. Marín-Hernández A. Saavedra E. Energy metabolism in tumor cells. FEBS J. 2007;274:1393–1418. PubMed
Murphy MP. Smith R. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47:629–656. PubMed
Neuzil J. Vitamin E succinate and cancer treatment: a vitamin E prototype for selective anti-tumour activity. Br J Cancer. 2003;89:1822–1826. PubMed PMC
Neuzil J. Dong LF. Ramanathapuram L. Hahn T. Chladova M. Wang XF. Zobalova R. Prochazka L. Gold M. Freeman RE. Turanek J. Akporiaye ET. Dyason J. Ralph SJ. Vitamin E analogues: a novel group of mitocans, anti-cancer agents that act by targeting mitochondria. Mol Aspects Med. 2007;28:607–645. PubMed
Neuzil J. Schröder A. von Hundelshausen P. Zernecke A. Weber T. Gellert N. Weber C. Inhibition of inflammatory endothelial responses by a pathway involving caspase activation and p65 cleavage. Biochemistry. 2001;40:4686–4692. PubMed
Neuzil J. Swettenham E. Wang XF. Dong LF. Stapelberg M. α-Tocopheryl succinate inhibits angiogenesis by disrupting paracrine FGF2 signalling. FEBS Lett. 2007;581:5611–5615. PubMed
Neuzil J. Tomasetti M. Zhao Y. Dong LF. Birringer M. Wang XF. Low P. Wu K. Salvatore BA. Ralph SJ. Vitamin E analogs, a novel group of ‘mitocans’, as anti-cancer agents: The importance of being redox-silent. Mol Pharmacol. 2007;71:1185–1199. PubMed
Neuzil J. Wang XF. Dong LF. Low P. Ralph SJ. Molecular mechanism of ‘mitocan’-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett. 2006;580:5125–5129. PubMed
Neuzil J. Weber T. Gellert N. Weber C. Selective cancer cell killing by α-tocopheryl succinate. Br J Cancer. 2001;84:87–89. PubMed PMC
Park D. Dilda P. Mitochondria as targets in angiogenesis inhibition. Mol Asp Med. 2010;31:113–131. PubMed
Prochazka L. Dong LF. Valis K. Freeman R. Ralph SJ. Turanek J. Neuzil J. α-Tocopheryl succinate causes mitochondrial permeabilization by preferential formation of Bak channel. Apoptosis. 2010;15:782–794. PubMed
Rafii S. Lyden D. Benezra R. Hattori K. Heissig B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer. 2002;2:826–835. PubMed
Roy S. Biswas S. Khanna S. Gordillo G. Bergdall V. Green J. Marsh CB. Gould LJ. Sen CK. Characterization of a preclinical model of chronic ischemic wound. Physiol Genomics. 2009;37:211–224. PubMed PMC
Schägger H. von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987;166:368–379. PubMed
Singh M. Brooks GC. Srere PA. Subunit structure and chemical characteristics of pig heart citrate synthase. J Biol Chem. 1970;245:4636–4640. PubMed
Snow BJ. Rolfe FL. Lockhart MM. Frampton CM. O'Sullivan JD. Fung V. Smith RA. Murphy MP. Taylor KM. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease. Mov Disord. 2010;25:1670–1674. PubMed
Stapelberg M. Gellert N. Swettenham E. Tomasetti M. Witting PK. Procopio A. Neuzil J. α-Tocopheryl succinate inhibits malignant mesothelioma by disrupting the FGF autocrine loop: the role of oxidative stress. J Biol Chem. 2005;280:25369–25376. PubMed
Sun F. Huo X. Zhai Y. Wang A. Xu J. Su D. Bartlam M. Rao Z. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell. 2005;121:1043–1057. PubMed
Tomasetti M. Gellert N. Procopio A. Neuzil J. A vitamin E analogue suppresses malignant mesothelioma in a pre-clinical model: a prototype of a future drug against a fatal neoplastic disease? Int J Cancer. 2004;109:641–642. PubMed
Trachootham D. Alexandre J. Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–591. PubMed
Valis K. Prochazka L. Boura E. Chladova M. Obsil T. Rohlena J. Truksa J. Dong LF. Ralph SJ. Neuzil J. Hippo/Mst1 stimulates transcription of NOXA in a FoxO1-dependent manner. Cancer Res. 2011;71:946–954. PubMed
Wang XF. Birringer M. Dong LF. Veprek P. Low P. Swettenham E. Stantic M. Yuan LH. Zobalova R. Wu K. Ralph SJ. Ledvina M. Neuzil J. A peptide adduct of vitamin E succinate targets breast cancer cells with high erbB2 expression. Cancer Res. 2007;67:3337–3344. PubMed
Weber T. Dalen H. Andera L. Nègre-Salvayre A. Augé N. Sticha M. Loret A. Terman A. Witting PK. Higuchi M. Plasilova M. Zivny J. Gellert N. Weber C. Neuzil J. Mitochondria play a central role in apoptosis induced by α-tocopheryl succinate, an agent with anticancer activity. Comparison with receptor-mediated pro-apoptotic signaling. Biochemistry. 2003;42:4277–4291. PubMed
Weber T. Lu M. Andera L. Lahm H. Gellert N. Fariss MW. Korinek V. Sattler W. Ucker DS. Terman A. Schröder A. Erl W. Brunk U. Coffey RJ. Weber C. Neuzil J. Vitamin E succinate is a potent novel anti-neoplastic agent with high tumor selectivity and cooperativity with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, Apo2L) in vivo. Clin Cancer Res. 2002;8:863–869. PubMed
Effects of metabolic cancer therapy on tumor microenvironment
Mitochondrial respiration supports autophagy to provide stress resistance during quiescence
Mitochondrial complex II and reactive oxygen species in disease and therapy
Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy
Pleiotropic Effects of Biguanides on Mitochondrial Reactive Oxygen Species Production
Characterisation of mesothelioma-initiating cells and their susceptibility to anti-cancer agents