Mitochondrial complex II and reactive oxygen species in disease and therapy
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
32290794
PubMed Central
PMC7178880
DOI
10.1080/13510002.2020.1752002
Knihovny.cz E-zdroje
- Klíčová slova
- OXPHOS, Respiratory complex II, cancer, mitochondria, reactive oxygen species, succinate, succinate dehydrogenase, tricarboxylic acid cycle,
- MeSH
- cílená molekulární terapie * MeSH
- lidé MeSH
- mitochondriální nemoci farmakoterapie metabolismus patologie MeSH
- mitochondrie metabolismus patologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- respirační komplex II metabolismus MeSH
- transport elektronů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH
- respirační komplex II MeSH
Increasing evidence points to the respiratory Complex II (CII) as a source and modulator of reactive oxygen species (ROS). Both functional loss of CII as well as its pharmacological inhibition can lead to ROS generation in cells, with a relevant impact on the development of pathophysiological conditions, i.e. cancer and neurodegenerative diseases. While the basic framework of CII involvement in ROS production has been defined, the fine details still await clarification. It is important to resolve these aspects to fully understand the role of CII in pathology and to explore its therapeutic potential in cancer and other diseases.
Institute of Biotechnology of the Czech Academy of Sciences Prague West Czech Republic
School of Medical Science Griffith University Southport Qld Australia
Zobrazit více v PubMed
Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002 Jan;82(1):47–95. PubMed
Zorov DB, Bannikova SY, Belousov VV, et al. . Reactive oxygen and nitrogen species: friends or foes? Biochem Biokhimiia. 2005 Feb;70(2):215–221. PubMed
Andreyev AY, Kushnareva YE, Murphy AN, et al. . Mitochondrial ROS metabolism: 10 years later. Biochem Biokhimiia. 2015 May;80(5):517–531. PubMed PMC
Lin MT, Beal MF.. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006 Oct 19;443(7113):787–795. PubMed
Boveris A, Navarro A.. Brain mitochondrial dysfunction in aging. IUBMB Life. 2008 May;60(5):308–314. PubMed
Halestrap AP, Clarke SJ, Khaliulin I.. The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta. 2007 Aug;1767(8):1007–1031. PubMed PMC
Costa A, Scholer-Dahirel A, Mechta-Grigoriou F.. The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Semin Cancer Biol. 2014 Apr;25:23–32. PubMed
Assi M. The differential role of reactive oxygen species in early and late stages of cancer. Am J Physiol Regul Integr Comp Physiol. 2017 Dec 1;313(6):R646–r653. PubMed
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009 Jan 1;417(1):1–13. PubMed PMC
Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, et al. . Mitochondria and reactive oxygen species. Free Radic Biol Med. 2009 Aug 15;47(4):333–343. PubMed
Drose S, Brandt U.. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol. 2012;748:145–169. PubMed
Yankovskaya V, Horsefield R, Tornroth S, et al. . Architecture of succinate dehydrogenase and reactive oxygen species generation. Science. 2003 Jan 31;299(5607):700–704. PubMed
Bardella C, Pollard PJ, Tomlinson I.. SDH mutations in cancer. Biochim Biophys Acta. 2011 Nov;1807(11):1432–1443. PubMed
Iverson TM, Maklashina E, Cecchini G.. Structural basis for malfunction in complex II. J Biol Chem. 2012 Oct 12;287(42):35430–35438. PubMed PMC
Votyakova TV, Reynolds IJ.. Deltapsi(m)-dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem. 2001 Oct;79(2):266–277. PubMed
Liu Y, Fiskum G, Schubert D.. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem. 2002 Mar;80(5):780–787. PubMed
Muller FL, Liu Y, Abdul-Ghani MA, et al. . High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates. Biochem J. 2008 Jan 15;409(2):491–499. PubMed
Treberg JR, Quinlan CL, Brand MD.. Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I). J Biol Chem. 2011 Aug 5;286(31):27103–27110. PubMed PMC
Ralph SJ, Moreno-Sanchez R, Neuzil J, et al. . Inhibitors of succinate: quinone reductase/complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death. Pharm Res. 2011 Nov;28(11):2695–2730. PubMed
Beinert H. Spectroscopy of succinate dehydrogenases, a historical perspective. Biochim Biophys Acta. 2002 Jan 17;1553(1-2):7–22. PubMed
Cecchini G. Function and structure of complex II of the respiratory chain. Annu Rev Biochem. 2003;72:77–109. PubMed
Sun F, Huo X, Zhai Y, et al. . Crystal structure of mitochondrial respiratory membrane protein complex II. Cell. 2005 Jul 1;121(7):1043–1057. PubMed
Bezawork-Geleta A, Rohlena J, Dong L, et al. . Mitochondrial complex II: At the crossroads. Trends Biochem Sci. 2017 Apr;42(4):312–325. PubMed PMC
Hao HX, Khalimonchuk O, Schraders M, et al. . SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science. 2009 Aug 28;325(5944):1139–1142. PubMed PMC
Ghezzi D, Goffrini P, Uziel G, et al. . SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat Genet. 2009 Jun;41(6):654–656. PubMed
Na U, Yu W, Cox J, et al. . The LYR factors SDHAF1 and SDHAF3 mediate maturation of the iron-sulfur subunit of succinate dehydrogenase. Cell Metab. 2014 Aug 5;20(2):253–266. PubMed PMC
Van Vranken JG, Bricker DK, Dephoure N, et al. . SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration. Cell Metab. 2014 Aug 5;20(2):241–252. PubMed PMC
Belt K, Van Aken O, Murcha M, et al. . An assembly factor promotes assembly of flavinated SDH1 into the succinate dehydrogenase complex. Plant Physiol. 2018 Aug;177(4):1439–1452. PubMed PMC
Sharma P, Maklashina E, Cecchini G, et al. . Crystal structure of an assembly intermediate of respiratory complex II. Nat Commun. 2018;9(1):274. PubMed PMC
Sharma P, Maklashina E, Cecchini G, et al. . Maturation of the respiratory complex II flavoprotein. Curr Opin Struct Biol. 2019 Mar 6;59:38–46. PubMed PMC
Maher MJ, Herath AS, Udagedara SR, et al. . Crystal structure of bacterial succinate:quinone oxidoreductase flavoprotein SdhA in complex with its assembly factor SdhE. Proc Natl Acad Sci USA. 2018 Mar 20;115(12):2982–2987. PubMed PMC
Bezawork-Geleta A, Wen H, Dong L, et al. . Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints. Nat Commun. 2018 Jun 7;9(1):2221. PubMed PMC
Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci. 2008 Dec;1147:37–52. PubMed PMC
Lambert AJ, Brand MD.. Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem. 2004 Sep 17;279(38):39414–39420. PubMed
Moreno-Sanchez R, Hernandez-Esquivel L, Rivero-Segura NA, et al. . Reactive oxygen species are generated by the respiratory complex II–evidence for lack of contribution of the reverse electron flow in complex I. FEBS J. 2013 Feb;280(3):927–938. PubMed
Quinlan CL, Orr AL, Perevoshchikova IV, et al. . Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem. 2012 Aug 3;287(32):27255–27264. PubMed PMC
Siebels I, Drose S.. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates. Biochim Biophys Acta. 2013 Oct;1827(10):1156–1164. PubMed
Bonke E, Zwicker K, Drose S.. Manganese ions induce H2O2 generation at the ubiquinone binding site of mitochondrial complex II. Arch Biochem Biophys. 2015 Aug 15;580:75–83. PubMed
Drose S, Hanley PJ, Brandt U.. Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III. Biochim Biophys Acta. 2009 Jun;1790(6):558–565. PubMed
Drose S, Bleier L, Brandt U.. A common mechanism links differently acting complex II inhibitors to cardioprotection: modulation of mitochondrial reactive oxygen species production. Mol Pharmacol. 2011 May;79(5):814–822. PubMed
Miyadera H, Shiomi K, Ui H, et al. . Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase). Proc Natl Acad Sci USA. 2003 Jan 21;100(2):473–477. PubMed PMC
Dong LF, Low P, Dyason JC, et al. . Alpha-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene. 2008 Jul 17;27(31):4324–4335. PubMed PMC
Dong LF, Jameson VJ, Tilly D, et al. . Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem. 2011 Feb 4;286(5):3717–3728. PubMed PMC
Dong LF, Jameson VJ, Tilly D, et al. . Mitochondrial targeting of alpha-tocopheryl succinate enhances its pro-apoptotic efficacy: a new paradigm for effective cancer therapy. Free Radic Biol Med. 2011 Jun 1;50(11):1546–1555. PubMed
Kluckova K, Sticha M, Cerny J, et al. . Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation. Cell Death Dis. 2015 May 7;6:e1749. PubMed PMC
Mbaya E, Oules B, Caspersen C, et al. . Calcium signalling-dependent mitochondrial dysfunction and bioenergetics regulation in respiratory chain complex II deficiency. Cell Death Differ. 2010 Dec;17(12):1855–1866. PubMed
Drose S. Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning. Biochim Biophys Acta. 2013 May;1827(5):578–587. PubMed
Guzy RD, Sharma B, Bell E, et al. . Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol. 2008 Jan;28(2):718–731. PubMed PMC
Selak MA, Armour SM, MacKenzie ED, et al. . Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005 Jan;7(1):77–85. PubMed
Goffrini P, Ercolino T, Panizza E, et al. . Functional study in a yeast model of a novel succinate dehydrogenase subunit B gene germline missense mutation (C191Y) diagnosed in a patient affected by a glomus tumor. Hum Mol Genet. 2009 May 15;18(10):1860–1868. PubMed
Ishii T, Miyazawa M, Onodera A, et al. . Mitochondrial reactive oxygen species generation by the SDHC V69E mutation causes low birth weight and neonatal growth retardation. Mitochondrion. 2011 Jan;11(1):155–165. PubMed
Li J, Liang N, Long X, et al. . SDHC-related deficiency of SDH complex activity promotes growth and metastasis of hepatocellular carcinoma via ROS/NFkappaB signaling. Cancer Lett. 2019 Oct 1;461:44–55. PubMed
Owens KM, Aykin-Burns N, Dayal D, et al. . Genomic instability induced by mutant succinate dehydrogenase subunit D (SDHD) is mediated by O2(-*) and H2O2. Free Radic Biol Med. 2012 Jan 1;52(1):160–166. PubMed PMC
Chang YL, Hsieh MH, Chang WW, et al. . Instability of succinate dehydrogenase in SDHD polymorphism connects reactive oxygen species production to nuclear and mitochondrial genomic mutations in yeast. Antioxid Redox Signal. 2015 Mar 1;22(7):587–602. PubMed PMC
Messner KR, Imlay JA.. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J Biol Chem. 2002 Nov 8;277(45):42563–42571. PubMed
Guo J, Lemire BD.. The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide. J Biol Chem. 2003 Nov 28;278(48):47629–47635. PubMed
Szeto SS, Reinke SN, Sykes BD, et al. . Ubiquinone-binding site mutations in the Saccharomyces cerevisiae succinate dehydrogenase generate superoxide and lead to the accumulation of succinate. J Biol Chem. 2007 Sep 14;282(37):27518–27526. PubMed
Maklashina E, Rajagukguk S, Iverson TM, et al. . The unassembled flavoprotein subunits of human and bacterial complex II have impaired catalytic activity and generate only minor amounts of ROS. J Biol Chem. 2018 May 18;293(20):7754–7765. PubMed PMC
Lemarie A, Huc L, Pazarentzos E, et al. . Specific disintegration of complex II succinate:ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis induction. Cell Death Differ. 2011 Feb;18(2):338–349. PubMed PMC
Courage C, Jackson CB, Hahn D, et al. . SDHA mutation with dominant transmission results in complex II deficiency with ocular, cardiac, and neurologic involvement. Am J Med Genet A. 2017 Jan;173(1):225–230. PubMed
Rustin P, Rotig A.. Inborn errors of complex II–unusual human mitochondrial diseases. Biochim Biophys Acta. 2002 Jan 17;1553(1-2):117–122. PubMed
Jain-Ghai S, Cameron JM, Al Maawali A, et al. . Complex II deficiency–a case report and review of the literature. Am J Med Genet A. 2013 Feb;161a(2):285–294. PubMed
Brouillet E, Hantraye P, Ferrante RJ, et al. . Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA. 1995 Jul 18;92(15):7105–7109. PubMed PMC
Gu M, Gash MT, Mann VM, et al. . Mitochondrial defect in Huntington's disease caudate nucleus. Ann Neurol. 1996 Mar;39(3):385–389. PubMed
Benchoua A, Trioulier Y, Zala D, et al. . Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated Huntingtin. Mol Biol Cell. 2006 Apr;17(4):1652–1663. PubMed PMC
Naseri NN, Bonica J, Xu H, et al. . Novel metabolic Abnormalities in the tricarboxylic acid cycle in Peripheral cells from Huntington's disease patients. PLoS One. 2016;11(9):e0160384–e0160384. PubMed PMC
Alston CL, Davison JE, Meloni F, et al. . Recessive germline SDHA and SDHB mutations causing leukodystrophy and isolated mitochondrial complex II deficiency. J Med Genet. 2012 Sep;49(9):569–577. PubMed PMC
Bourgeron T, Rustin P, Chretien D, et al. . Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet. 1995 Oct;11(2):144–149. PubMed
Parfait B, Chretien D, Rotig A, et al. . Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome. Hum Genet. 2000 Feb;106(2):236–243. PubMed
Pagnamenta AT, Hargreaves IP, Duncan AJ, et al. . Phenotypic variability of mitochondrial disease caused by a nuclear mutation in complex II. Mol Genet Metab. 2006 Nov;89(3):214–221. PubMed
Jackson CB, Nuoffer JM, Hahn D, et al. . Mutations in SDHD lead to autosomal recessive encephalomyopathy and isolated mitochondrial complex II deficiency. J Med Genet. 2014 Mar;51(3):170–175. PubMed
Pang Y, Liu Y, Pacak K, et al. . Pheochromocytomas and paragangliomas: from genetic diversity to targeted therapies. Cancers. 2019;11(4):436. PubMed PMC
Janeway KA, Kim SY, Lodish M, et al. . Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci USA. 2011 Jan 4;108(1):314–318. PubMed PMC
Neumann HPH, Pawlu C, Pęczkowska M, et al. . Distinct clinical features of paraganglioma Syndromes associated With SDHB and SDHD Gene mutations. JAMA. 2004;292(8):943–951. PubMed
Ricketts C, Woodward ER, Killick P, et al. . Germline SDHB mutations and familial renal cell carcinoma. J Natl Cancer Inst. 2008;100(17):1260–1262. PubMed
Ni Y, Zbuk KM, Sadler T, et al. . Germline mutations and variants in the succinate dehydrogenase genes in Cowden and Cowden-like syndromes. Am J Hum Genet. 2008 Aug;83(2):261–268. PubMed PMC
Ngo DTM, Sverdlov AL, Karki S, et al. . Oxidative modifications of mitochondrial complex II are associated with insulin resistance of visceral fat in obesity. Am J Physiol Endocrinol Metab. 2019 Feb 1;316(2):E168–e177. PubMed PMC
He J, Watkins S, Kelley DE.. Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes. 2001 Apr;50(4):817–823. PubMed
Bonomini F, Rodella LF, Rezzani R.. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 2015;6(2):109–120. PubMed PMC
Maslov LN, Naryzhnaya NV, Boshchenko AA, et al. . Is oxidative stress of adipocytes a cause or a consequence of the metabolic syndrome? J Clin Transl Endocrinol. 2019 Mar;15:1–5. PubMed PMC
Sverdlov AL, Elezaby A, Qin F, et al. . Mitochondrial reactive oxygen species mediate Cardiac Structural, functional, and mitochondrial Consequences of diet-induced metabolic Heart disease. J Am Heart Assoc. 2016 Jan;5(1):e002555. DOI:10.1161/JAHA.115.002555. PubMed DOI PMC
Pessayre D, Berson A, Fromenty B, et al. . Mitochondria in steatohepatitis. Semin Liver Dis. 2001;21(1):57–69. PubMed
Ajith TA. Role of mitochondria and mitochondria-targeted agents in non-alcoholic fatty liver disease. Clin Exp Pharmacol Physiol. 2018;45(5):413–421. PubMed
Oberbach A, Bossenz Y, Lehmann S, et al. . Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes Care. 2006 Apr;29(4):895–900. PubMed
Monaco CMF, Hughes MC, Ramos SV, et al. . Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes. Diabetologia. 2018;61(6):1411–1423. PubMed
Fromenty B, Fisch C, Berson A, et al. . Dual effect of amiodarone on mitochondrial respiration. Initial protonophoric uncoupling effect followed by inhibition of the respiratory chain at the levels of complex I and complex II. J Pharmacol Exp Ther. 1990 Dec;255(3):1377–1384. PubMed
Fazakerley DJ, Chaudhuri R, Yang P, et al. . Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance. Elife. 2018;7:e32111. PubMed PMC
Murphy MP, Smith RA.. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47:629–656. PubMed
Smith RA, Murphy MP.. Mitochondria-targeted antioxidants as therapies. Discov Med. 2011 Feb;11(57):106–114. PubMed
Cocheme HM, Kelso GF, James AM, et al. . Mitochondrial targeting of quinones: therapeutic implications. Mitochondrion. 2007 Jun;7(Suppl):S94–S102. PubMed
James AM, Sharpley MS, Manas AR, et al. . Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J Biol Chem. 2007 May 18;282(20):14708–14718. PubMed
Zhou J, Wang H, Shen R, et al. . Mitochondrial-targeted antioxidant MitoQ provides neuroprotection and reduces neuronal apoptosis in experimental traumatic brain injury possibly via the Nrf2-ARE pathway. Am J Transl Res. 2018;10(6):1887–1899. PubMed PMC
Ozcan C, Bienengraeber M, Dzeja PP, et al. . Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. Am J Physiol Heart Circ Physiol. 2002 Feb;282(2):H531–H539. PubMed
Ozcan C, Terzic A, Bienengraeber M.. Effective pharmacotherapy against oxidative injury: alternative utility of an ATP-sensitive potassium channel opener. J Cardiovasc Pharmacol. 2007 Oct;50(4):411–418. PubMed
Wojtovich AP, Brookes PS.. The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondrial KATP channels. Basic Res Cardiol. 2009 Mar;104(2):121–129. PubMed PMC
Valls-Lacalle L, Barba I, Miro-Casas E, et al. . Selective inhibition of succinate dehydrogenase in reperfused myocardium with intracoronary malonate reduces infarct size. Sci Rep. 2018 Feb 5;8(1):2442. PubMed PMC
Zhao YP, Wang F, Jiang W, et al. . A mitochondrion-targeting tanshinone IIA derivative attenuates myocardial hypoxia reoxygenation injury through a SDH-dependent antioxidant mechanism. J Drug Target. 2019 Sep;27(8):896–902. PubMed
Wang F, Peng Q, Liu J, et al. . A novel ferulic acid derivative attenuates myocardial cell hypoxia reoxygenation injury through a succinate dehydrogenase dependent antioxidant mechanism. Eur J Pharmacol. 2019 Aug 5;856:172417. PubMed
Chouchani ET, Pell VR, Gaude E, et al. . Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014 Nov 20;515(7527):431–435. PubMed PMC
Martin JL, Costa ASH, Gruszczyk AV, et al. . Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation. Nat Metab. 2019;1:966–974. PubMed PMC
Pfleger J, He M, Abdellatif M.. Mitochondrial complex II is a source of the reserve respiratory capacity that is regulated by metabolic sensors and promotes cell survival. Cell Death Dis. 2015 Jul 30;6:e1835. PubMed PMC
Mills EL, Kelly B, Logan A, et al. . Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016 Oct 6;167(2):457–470. e13. PubMed PMC
Forrester SJ, Kikuchi DS, Hernandes MS, et al. . Reactive oxygen species in metabolic and inflammatory signaling. Circ Res. 2018;122(6):877–902. PubMed PMC
Anastacio MM, Kanter EM, Makepeace C, et al. . Cardioprotective mechanism of diazoxide involves the inhibition of succinate dehydrogenase. Ann Thorac Surg. 2013 Jun;95(6):2042–2050. PubMed PMC
Edalat A, Schulte-Mecklenbeck P, Bauer C, et al. . Mitochondrial succinate dehydrogenase is involved in stimulus-secretion coupling and endogenous ROS formation in murine beta cells. Diabetologia. 2015;58(7):1532–1541. PubMed
Mills EL, Pierce KA, Jedrychowski MP, et al. . Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature. 2018 Aug;560(7716):102–106. PubMed PMC
Grimm S. Respiratory chain complex II as general sensor for apoptosis. Biochim Biophys Acta. 2013 May;1827(5):565–572. PubMed
Hwang MS, Rohlena J, Dong LF, et al. . Powerhouse down: complex II dissociation in the respiratory chain. Mitochondrion. 2014 Nov;19(Pt A):20–28. PubMed
Guo L, Shestov AA, Worth AJ, et al. . Inhibition of mitochondrial complex II by the Anticancer Agent lonidamine. J Biol Chem. 2016 Jan 1;291(1):42–57. PubMed PMC
Pozza E D, Dando I, Pacchiana R, et al. . Regulation of succinate dehydrogenase and role of succinate in cancer. Semin Cell Dev Biol. 2020 Feb;98:4–14. PubMed
Rohlena J, Dong LF, Kluckova K, et al. . Mitochondrially targeted alpha-tocopheryl succinate is antiangiogenic: potential benefit against tumor angiogenesis but caution against wound healing. Antioxid Redox Signal. 2011 Dec 15;15(12):2923–2935. PubMed PMC
Dong LF, Swettenham E, Eliasson J, et al. . Vitamin E analogues inhibit angiogenesis by selective induction of apoptosis in proliferating endothelial cells: the role of oxidative stress. Cancer Res. 2007 Dec 15;67(24):11906–11913. PubMed
Kruspig B, Valter K, Skender B, et al. . Targeting succinate:ubiquinone reductase potentiates the efficacy of anticancer therapy. Biochim Biophys Acta. 2016 Aug;1863(8):2065–2071. PubMed
Liu Y, Pang Y, Zhu B, et al. . Therapeutic targeting of SDHB-mutated pheochromocytoma/paraganglioma with pharmacologic ascorbic acid. Clin Cancer Res. 2020 Mar. DOI:10.1158/1078-0432.CCR-19-2335. PubMed DOI PMC
Current progress in the therapeutic options for mitochondrial disorders