Characterisation of mesothelioma-initiating cells and their susceptibility to anti-cancer agents

. 2015 ; 10 (5) : e0119549. [epub] 20150501

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25932953

Malignant mesothelioma (MM) is an aggressive type of tumour causing high mortality. One reason for this paradigm may be the existence of a subpopulation of tumour-initiating cells (TICs) that endow MM with drug resistance and recurrence. The objective of this study was to identify and characterise a TIC subpopulation in MM cells, using spheroid cultures, mesospheres, as a model of MM TICs. Mesospheres, typified by the stemness markers CD24, ABCG2 and OCT4, initiated tumours in immunodeficient mice more efficiently than adherent cells. CD24 knock-down cells lost the sphere-forming capacity and featured lower tumorigenicity. Upon serial transplantation, mesospheres were gradually more efficiently tumrigenic with increased level of stem cell markers. We also show that mesospheres feature mitochondrial and metabolic properties similar to those of normal and cancer stem cells. Finally, we show that mesothelioma-initiating cells are highly susceptible to mitochondrially targeted vitamin E succinate. This study documents that mesospheres can be used as a plausible model of mesothelioma-initiating cells and that they can be utilised in the search for efficient agents against MM.

Erratum v

PubMed

Zobrazit více v PubMed

Tomasetti M, Amati M, Santarelli L, Alleva R, Neuzil J. Malignant mesothelioma: biology, diagnosis and therapeutic approaches. Curr Mol Pharm. 2009;2: 190–206. PubMed

Zucali P, Ceresoli G, De Vincenzo F, Simonelli M, Lorenzi E, Gianoncelli L, et al. Advances in the biology of malignant pleural mesothelioma. Cancer Treat Rev. 2011;37: 543–558. 10.1016/j.ctrv.2011.01.001 PubMed DOI

Baas P. Chemotherapy for malignant mesothelioma: from doxorubicin to vinorelbine; 2002. Elsevier. pp. 62–69. PubMed

Rice J. The global reorganization and revitalization of the asbestos industry, 1970–2007. Int J Health Serv. 2011;41: 239–254. PubMed

Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501: 346–354. 10.1038/nature12626 PubMed DOI

Saunders NA, Simpson F, Thompson EW, Hill MM, Endo-Munoz L, Leggatt G, et al. Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives, EMBO Mol Med. 2012;4: 675–684. 10.1002/emmm.201101131 PubMed DOI PMC

Deguen B, Goutebroze L, Giovannini M, Boisson C, van der Neut R, Jaurand MC, et al. Heterogeneity of mesothelioma cell lines as defined by altered genomic structure and expression of the NF2 gene. Int J Cancer. 1998;77: 554–560. PubMed

Kao SCH, Lee K, Armstrong NJ, Clarke S, Vardy J, van Zandwijk N, et al. Validation of tissue microarray technology in malignant pleural mesothelioma. Pathology, 2011;43: 128–132. 10.1097/PAT.0b013e328342016c PubMed DOI

Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta. 2010;1805: 105–117. 10.1016/j.bbcan.2009.11.002 PubMed DOI PMC

Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8: 755–768. 10.1038/nrc2499 PubMed DOI

Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414: 105–111. PubMed

Easwaran H, Tsai H-C, Baylin SB. Cancer epigenetics: Tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell. 2014;54: 716–727. 10.1016/j.molcel.2014.05.015 PubMed DOI PMC

Vermeulen L, de Sousa E, Melo F, Richel DJ, Medema JP. The developing cancer stem-cell model: clinical challenges and opportunities. Lancet Oncol. 2012;13: e83–e89. 10.1016/S1470-2045(11)70257-1 PubMed DOI

Cortes-Dericks L, Carboni GL, Schmid RA, Karoubi G. Putative cancer stem cells in malignant pleural mesothelioma show resistance to cisplatin and pemetrexed. Int J Oncology. 1010;37: 437. PubMed

Cortes-Dericks L, Froment L, Boesch R, Schmid RA, Karoubi G. Cisplatin-resistant cells in malignant pleural mesothelioma cell lines show ALDHhighCD44+ phenotype and sphere-forming capacity. BMC Cancer. 2014;14: 304 10.1186/1471-2407-14-304 PubMed DOI PMC

Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432: 396–401. PubMed

Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009;69: 1302–1313. 10.1158/0008-5472.CAN-08-2741 PubMed DOI PMC

Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science.1992; 255: 1707–1710. PubMed

Pass HI, Stevens EJ, Oie H, Tsokos MG, Abati AD, Fetsch PA, et al. Characteristics of nine newly derived mesothelioma cell lines. Ann Thorac Surg. 1995;59: 835–844. PubMed

Jackaman C, Bundell CS, Kinnear BF, Smith AM, Filion P, van Hagen D, et al. IL-2 intratumoral immunotherapy enhances CD8+ T cells that mediate destruction of tumor cells and tumor-associated vasculature: a novel mechanism for IL-2. J Immunol. 2003;171: 5051–5063. PubMed

Taswell C. Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J Immunol. 1981;126: 1614–1619. PubMed

Rota L, Lazzarino D, Ziegler A, LeRoith D, Wood T. Determining mammosphere-forming potential: Application of the limiting dilution analysis. J Mammary Gland Biol Neoplasia. 2012;17: 119–123. 10.1007/s10911-012-9258-0 PubMed DOI PMC

Barrientos A, Fontanesi F, Díaz F. Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using polarography and spectrophotometric enzyme assays. Curr Prot Human Genet. 2009;19.13. 11–19.13. 14. PubMed PMC

Gnaiger E, Steinlechner-Maran R, Méndez G, Eberl T, Margreiter R. Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr. 1995;27: 583–596. PubMed

Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol. 1996;175: 1–13. PubMed

Jordan CT, Guzman ML, Noble M. Cancer stem cells. New Engl J Med. 2006;355: 1253–1261. PubMed

Stapelberg M, Zobalova R, Nguyen MN, Walker T, Stantic M, Goodwin J, et al. Indoleamine-2,3-dioxygenase elevated in tumor-initiating cells is suppressed by mitocans. Free Radic Biol Med. 2014;67: 41–50. 10.1016/j.freeradbiomed.2013.10.003 PubMed DOI

Kristiansen G, Schluns K, Yongwei Y, Denkert C, Dietel M, Petersen I. CD24 is an independent prognostic marker of survival in nonsmall cell lung cancer patients. Br J Cancer. 2003;88: 231–236. PubMed PMC

Yang XR, Xu Y, Yu B, Zhou J, Li JC, Qiu SJ, et al. CD24 is a novel predictor for poor prognosis of hepatocellular carcinoma after surgery. Clin Cancer Res. 2009;15: 5518–5527. 10.1158/1078-0432.CCR-09-0151 PubMed DOI

Sagiv E, Starr A, Rozovski U, Khosravi R, Altevogt P, Wang T, et al. Targeting CD24 for treatment of colorectal and pancreatic cancer by monoclonal antibodies or small interfering RNA. Cancer Res. 2008;68: 2803–2812. 10.1158/0008-5472.CAN-07-6463 PubMed DOI

Smith SC, Oxford G, Wu Z, Nitz MD, Conaway M, Frierson HF, et al. The metastasis-associated gene CD24 is regulated by Ral GTPase and is a mediator of cell proliferation and survival in human cancer. Cancer Res. 2006;66: 1917–1922. PubMed

Baumann P, Cremers N, Kroese F, Orend G, Chiquet-Ehrismann R, Uede T, et al. CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res. 2005;65: 10783–10793. PubMed

Destro A, Ceresoli G, Falleni M, Zucali P, Morenghi E, Bianchi P, et al. EGFR overexpression in malignant pleural mesothelioma: An immunohistochemical and molecular study with clinico-pathological correlations. Lung Cancer. 2006;51: 207–215. PubMed

Robinson BW, Lake RA. Advances in malignant mesothelioma. New Engl J Med. 2005;353: 1591–1603. PubMed

Tomasetti M, Gellert N, Procopio A, Neuzil J. A vitamin E analogue suppresses malignant mesothelioma in a preclinical model: a future drug against a fatal neoplastic disease? Int J Cancer. 2004;109: 641–642. PubMed

Kovarova J, Bajzikova M, Vondrusova M, Stursa J, Goodwin J, Nguyen M, et al. Mitochondrial targeting of α-tocopheryl succinate enhances its anti-mesothelioma efficacy. Redox Report. 2014;19: 16–25. 10.1179/1351000213Y.0000000064 PubMed DOI PMC

Steele JP, Klabatsa A. Chemotherapy options and new advances in malignant pleural mesothelioma. Ann Oncol. 2005;16: 345–351. PubMed

Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA. 2003;100: 15178–15183. PubMed PMC

Moore KA, Lemischka IR. Stem cells and their niches. Science. 2006;311: 1880–1885. PubMed

Pastrana E, Silva-Vargas V, Doetsch F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell. 2011;8: 486–498. 10.1016/j.stem.2011.04.007 PubMed DOI PMC

Di Meglio F, Castaldo C, Nurzynska D, Romano V, Miraglia R, et al. Epithelial-mesenchymal transition of epicardial mesothelium is a source of cardiac CD117-positive stem cells in adult human heart. J Mol Cell Cardiol. 2010;49: 719–727. 10.1016/j.yjmcc.2010.05.013 PubMed DOI

Herrick SE, Mutsaers SE. Mesothelial progenitor cells and their potential in tissue engineering. Int J Biochem Cell Biol. 2004;36: 621–642. PubMed

Herrick SE, Mutsaers SE. The potential of mesothelial cells in tissue engineering and regenerative medicine applications. Int J Artif Organs. 2007;30: 527–540. PubMed

Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004;5: 738–743. PubMed

Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Bancone C, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63: 5821–5828. PubMed

Cho YM, Kwon S, Pak YK, Seol HW, Choi YM, Park do J, et al. Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun. 2006;348: 1472–1478. PubMed

Gordon GJ, Rockwell GN, Godfrey PA, Jensen RV, Glickman JN, Yeap BY, et al. Validation of genomics-based prognostic tests in malignant pleural mesothelioma. Clin Cancer Res. 2005;11: 4406–4414. PubMed PMC

Lee TKW, Castilho A, Cheung VCH, Tang KH, Ma S, Ng IOL. CD24+ liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell. 2011;9: 50–63. 10.1016/j.stem.2011.06.005 PubMed DOI

Armstrong L, Tilgner K, Saretzki G, Atkinson SP, Stojkovic M, Moreno R, et al. Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells. 2010;28: 661–673. 10.1002/stem.307 PubMed DOI

Birket MJ, Orr AL, Gerencser AA, Madden DT, Vitelli C, Swistowski A, et al. A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. J Cell Sci. 2011;124: 348–358. 10.1242/jcs.072272 PubMed DOI PMC

Lonergan T, Bavister B, Brenner C. Mitochondria in stem cells. Mitochondrion. 2007;7: 289–296. PubMed PMC

Prigione A, Hossini AM, Lichtner B, Serin A, Fauler B, Megges M, et al. Mitochondrial-associated cell death mechanisms are reset to an embryonic-like state in aged donor-derived iPS cells harboring chromosomal aberrations. PLoS One. 2011;6: e27352 10.1371/journal.pone.0027352 PubMed DOI PMC

St John JC, Ramalho-Santos J, Gray HL, Petrosko P, Rawe VY, Navara CS, et al. The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells. 2005;7: 141–153. PubMed

Chung S, Arrell DK, Faustino RS, Terzic A, Dzeja PP. Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation. J Mol Cell Cardiol. 2010;48: 725–734. 10.1016/j.yjmcc.2009.12.014 PubMed DOI PMC

Zhang J, Khvorostov I, Hong JS, Oktay Y, Vergnes L, Nuebel E, et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 2011;30: 4860–4873. 10.1038/emboj.2011.401 PubMed DOI PMC

Kobayashi CI, Suda T. Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol. 2012;227: 421–430. 10.1002/jcp.22764 PubMed DOI

Ramos-Mejia V, Bueno C, Roldan M, Sanchez L, Ligero G, Menendez P, et al. The adaptation of human embryonic stem cells to different feeder-free culture conditions is accompanied by a mitochondrial response. Stem Cells Dev. 2012;21: 1145–1155. 10.1089/scd.2011.0248 PubMed DOI

Ye XQ, Li Q, Wang GH, Sun FF, Huang GJ, Bian XW, et al. Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells. Int J Cancer. 2011;129: 820–831. 10.1002/ijc.25944 PubMed DOI

Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7: 1028–1034. PubMed

Carbone M, Rizzo P, Grimley PM, Procopio A, Mew DJ, Shridhar V, et al. Simian virus-40 large-T antigen binds p53 in human mesotheliomas. Nat Med. 1997;3: 908–912. PubMed

Neuzil J, Weber T, Schroder A, Lu M, Ostermann G, Gellert N, et al. Induction of cancer cell apoptosis by α-tocopheryl succinate: molecular pathways and structural requirements. FASEB J. 2001;15: 403–415. PubMed

Dong L-F, Freeman R, Liu J, Zobalova R, Marin-Hernandez A, Stantic M, et al. Suppression of tumor growth in vivo by the mitocan α-tocopheryl succinate requires respiratory complex II. Clin Cancer Res. 2009;15: 1593–1600. 10.1158/1078-0432.CCR-08-2439 PubMed DOI

Dong L-F, Jameson VJ, Tilly D, Cerny J, Mahdavian E, Marín-Hernández A, et al. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem. 2011;286: 3717–3728. 10.1074/jbc.M110.186643 PubMed DOI PMC

Lu L, Chappel MS, Humphries RK, Osmond DG. Regulation of cell survival during B lymphopoiesis: increased pre-B cell apoptosis in CD24-transgenic mouse bone marrow. Eur J Immunol. 2000;30: 2686–2691. PubMed

Rohlena J, Dong L-F, Kluckova K, Zobalova R, Goodwin J, Tilly D, et al. Mitochondrially targeted α-tocopheryl succinate is antiangiogenic: potential benefit against tumor angiogenesis but caution against wound healing. Antiox Redox Signal. 2011;15: 2923–2935. 10.1089/ars.2011.4192 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints

. 2018 Jun 07 ; 9 (1) : 2221. [epub] 20180607

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace