Integrating Genomics and Biogeography to Unravel the Origin of a Mountain Biota: The Case of a Reptile Endemicity Hotspot in Arabia
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
Departament de Recerca i Universitats de la Generalitat de Catalunya
FPU18/04742
Ministerio de Ciencia, Innovación y Universidades, Spain
PRE2019-088729
FPI grant from the Ministerio de Ciencia, Innovación y Universidades, Spain
22-12757S
Czech Science Foundation
204069
Wellcome Trust - United Kingdom
PubMed
38953551
PubMed Central
PMC11958937
DOI
10.1093/sysbio/syae032
PII: 7702715
Knihovny.cz E-zdroje
- Klíčová slova
- Arabia, Hajar Mountains, arid environments, biogeography, ddRADseq, desertification, genomics, mountain building, reptiles,
- MeSH
- biodiverzita MeSH
- fylogeografie MeSH
- genomika * MeSH
- plazi * genetika klasifikace MeSH
- společenstvo * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Advances in genomics have greatly enhanced our understanding of mountain biodiversity, providing new insights into the complex and dynamic mechanisms that drive the formation of mountain biotas. These span from broad biogeographic patterns to population dynamics and adaptations to these environments. However, significant challenges remain in integrating large-scale and fine-scale findings to develop a comprehensive understanding of mountain biodiversity. One significant challenge is the lack of genomic data, especially in historically understudied arid regions where reptiles are a particularly diverse vertebrate group. In the present study, we assembled a de novo genome-wide SNP dataset for the complete endemic reptile fauna of a mountain range (19 described species with more than 600 specimens sequenced), and integrated state-of-the-art biogeographic analyses at the population, species, and community level. Thus, we provide a holistic integration of how a whole endemic reptile community has originated, diversified and dispersed through a mountain system. Our results show that reptiles independently colonized the Hajar Mountains of southeastern Arabia 11 times. After colonization, species delimitation methods suggest high levels of within-mountain diversification, supporting up to 49 deep lineages. This diversity is strongly structured following local topography, with the highest peaks acting as a broad barrier to gene flow among the entire community. Interestingly, orogenic events do not seem key drivers of the biogeographic history of reptiles in this system. Instead, past climatic events seem to have had a major role in this community assemblage. We observe an increase of vicariant events from Late Pliocene onwards, coinciding with an unstable climatic period of rapid shifts between hyper-arid and semiarid conditions that led to the ongoing desertification of Arabia. We conclude that paleoclimate, and particularly extreme aridification, acted as a main driver of diversification in arid mountain systems which is tangled with the generation of highly adapted endemicity. Overall, our study does not only provide a valuable contribution to understanding the evolution of mountain biodiversity, but also offers a flexible and scalable approach that can be reproduced into any taxonomic group and at any discrete environment.
Department of Zoology Faculty of Science Charles University 128 00 Prague Czech Republic
Environment Authority Muscat Oman
Institute of Evolutionary Biology Passeig Marítim de la Barceloneta 37 49 08003 Barcelona Spain
Museo Nacional de Ciencias Naturales CSIC C José Gutiérrez Abascal 2 28006 Madrid Spain
Museu de Ciències Naturals de Barcelona P° Picasso s n Parc Ciutadella 08003 Barcelona Spain
Zobrazit více v PubMed
Abascal F., Zardoya R., Telford M.J.. 2010. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38:W7–13. PubMed PMC
Akaike H., Petrov B.N., Csaki F.. 1973. Second international symposium on information theory.
Alexander D.H., Lange K.. 2011. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinf. 12:1–6. PubMed PMC
Alexander D.H., Novembre J., Lange K.. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19:1655–1664. PubMed PMC
Allendorf F.W., Hohenlohe P.A., Luikart G.. 2010. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11:697–709. PubMed
Antonelli A. 2015. Multiple origins of mountain life. Nat 524:300–301. PubMed
Bamberger S., Xu J., Hausdorf B.. 2022. Evaluating species delimitation methods in radiations: the land snail Albinaria cretensis complex on crete. Syst. Biol. 71:439–460. PubMed
Barnes R., Sahr K., Evenden G., Johnson A., Warmerdam F.. 2017. dggridR: discrete global grids for R. R Packag. version 0.1. 12.
Bayzid M.S., Warnow T.. 2013. Naive binning improves phylogenomic analyses. Bioinformatics. 29:2277–2284. PubMed
Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J., Sayers E.W.. 2012. GenBank. Nucleic Acids Res. 41:D36–D42. PubMed PMC
Böhme M., Spassov N., Majidifard M.R., Gärtner A., Kirscher U., Marks M., Dietzel C., Uhlig G., El Atfy H., Begun D.R., Winklhofer M.. 2021. Neogene hyperaridity in Arabia drove the directions of mammalian dispersal between Africa and Eurasia. Commun. Earth Environ. 2:1–13.
Bosworth W., Huchon P., McClay K.. 2005. The red sea and gulf of Aden Basins. J. Afr. Earth Sci. 43:334–378.
Bouckaert R., Vaughan T.G., Barido-Sottani J., Duchêne S., Fourment M., Gavryushkina A., Heled J., Jones G., Kühnert D., De Maio N., Matschiner M., Mendes F.K., Müller N.F., Ogilvie H.A., Du Plessis L., Popinga A., Rambaut A., Rasmussen D., Siveroni I., Suchard M.A., Wu C.H., Xie D., Zhang C., Stadler T., Drummond A.J.. 2019. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15:e1006650. PubMed PMC
Brinkmann K., Patzelt A., Dickhoefer U., Schlecht E., Buerkert A.. 2009. Vegetation patterns and diversity along an altitudinal and a grazing gradient in the Jabal al Akhdar mountain range of northern Oman. J. Arid Environ. 73:1035–1045.
Brito J.C., Godinho R., Martínez-Freiría F., Pleguezuelos J.M., Rebelo H., Santos X., Vale C.G., Velo-Antón G., Boratyński Z., Carvalho S.B., Ferreira S., Gonçalves D.V., Silva T.L., Tarroso P., Campos J.C., Leite J.V., Nogueira J., Álvares F., Sillero N., Sow A.S., Fahd S., Crochet P.A., Carranza S.. 2014. Unravelling biodiversity, evolution and threats to conservation in the Sahara-Sahel. Biol. Rev. Camb. Philos. Soc. 89:215–231. PubMed
Bryant D., Bouckaert R., Felsenstein J., Rosenberg N.A., Roychoudhury A.. 2012. Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol. Biol. Evol. 29:1917–1932. PubMed PMC
Burriel-Carranza B., Els J., Carranza S.. 2022. Reptiles & Amphibians of the Hajar Mountains. Madrid: Editorial CSIC. ISBN: 978-84-00-10988-2. Available from: http://libros.csic.es/product_info.php?products_id=1605
Burriel-Carranza B., Estarellas M., Riaño G., Talavera A., Tejero-Cicuéndez H., Els J., Carranza S.. 2023a. Species boundaries to the limit: integrating species delimitation methods is critical to avoid taxonomic inflation in the case of the Hajar banded ground gecko (Trachydactylus hajarensis). Mol. Phylogenet. Evol. 186:107834. PubMed
Burriel-Carranza B., Tarroso P., Els J., Gardner A., Soorae P., Mohammed A.A., Tubati S.R.K., Eltayeb M.M., Shah J.N., Tejero-Cicuéndez H., Simó-Riudalbas M., Pleguezuelos J.M., Fernández-Guiberteau D., Šmíd J., Carranza S.. 2019. An integrative assessment of the diversity, phylogeny, distribution, and conservation of the terrestrial reptiles (Sauropsida, Squamata) of the United Arab Emirates. PLoS One 14:e0216273. PubMed PMC
Burriel-Carranza B., Estarellas M., Riaño G., Talavera A., Tejero-Cicuéndez H., Els J., Carranza S.. 2023b. Data from: species boundaries to the limit: integrating species delimitation methods is critical to avoid taxonomic inflation in the genomic era. Mendeley Data, V2. doi: 10.17632/dnsrsmkzkg.2 PubMed DOI
Card D.C., Jennings W.B., Edwards S.V.. 2023. Genome evolution and the future of phylogenomics of non-avian reptiles. Animals. 13(3):471. PubMed PMC
Carranza S., Arnold E.N.. 2006. Systematics, biogeography, and evolution of Hemidactylus geckos (Reptilia: Gekkonidae) elucidated using mitochondrial DNA sequences. Mol. Phylogenet. Evol. 38:531–545. PubMed
Carranza S., Els J., Burriel-Carranza B.. 2021. A field guide to the reptiles of Oman. Madrid: Digital CSIC. ISBN: 978-84-00-10876-2. Available from: http://libros.csic.es/product_info.php?products_id=1558
Carranza S., Simó-Riudalbas M., Jayasinghe S., Wilms T., Els J.. 2016. Microendemicity in the northern Hajar Mountains of Oman and the United Arab Emirates with the description of two new species of geckos of the genus Asaccus (Squamata: Phyllodactylidae). PeerJ 4:e2371. PubMed PMC
Carranza S., Xipell M., Tarroso P., Gardner A., Arnold E.N., Robinson M.D., Simó-Riudalbas M., Vasconcelos R., de Pous P., Amat F., Šmíd J., Sindaco R., Metallinou M., Els J., Pleguezuelos J.M., Machado L., Donaire D., Martínez G., Garcia-Porta J., Mazuch T., Wilms T., Gebhart J., Aznar J., Gallego J., Zwanzig B.M., Fernández-Guiberteau D., Papenfuss T., Saadi S.A., Alghafri A., Khalifa S., Farqani H.A., Bilal S.B., Alazri I.S., Adhoobi A.S.A., Omairi Z.S.A., Shariani M.A., Kiyumi A.A., Sariri T.A., Shukaili A.S.A., Akhzami S.N.A.. 2018. Diversity, distribution and conservation of the terrestrial reptiles of Oman (Sauropsida, Squamata). PLoS One 13:e0190389. PubMed PMC
Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17:540–552. PubMed
Chambers E.A., Hillis D.M.. 2020. The multispecies coalescent over-splits species in the case of geographically widespread Taxa. Syst. Biol. 69:184–193. PubMed
Chattopadhyay B., Garg K.M., Kumar A.K.V., Doss D.P.S., Rheindt F.E., Kandula S., Ramakrishnan U.. 2016. Genome-wide data reveal cryptic diversity and genetic introgression in an Oriental Cynopterine fruit bat radiation. BMC Evol. Biol. 16:1–15. PubMed PMC
Collyer ML, Adams DC.. 2019. RRPP: Linear Model Evaluation with Randomized Residuals in a Permutation Procedure. R package version 0.4.0. https://CRAN.R-project.org/package=RRPP
Davey J.W., Hohenlohe P.A., Etter P.D., Boone J.Q., Catchen J.M., Blaxter M.L.. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12(7):Article 7. PubMed
de Pous P., Machado L., Metallinou M., Červenka J., Kratochvíl L., Paschou N., Mazuch T., Šmíd J., Simó-Riudalbas M., Sanuy D., Carranza S.. 2016. Taxonomy and biogeography of Bunopus spatalurus (Reptilia; Gekkonidae) from the Arabian Peninsula. J. Zool. Syst. Evol. Res. 54:67–81.
Ding W., Ree R.H., Spicer R.A., Xing Y.. 2020. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science. 369(6503):578–581. doi: 10.1126/science.abb4484 PubMed DOI
Eaton D.A.R., Overcast I.. 2020. ipyrad: interactive assembly and analysis of RADseq datasets. Bioinformatics. 36:2592–2594. PubMed
Ericson P.G.P., Irestedt M.. 2022. Comparative population genomics reveals glacial cycles to drive diversifications in tropical montane birds (Aves, Timaliidae). Avian Res. 13:100063.
Esquerré D., Brennan I.G., Catullo R.A., Torres-Pérez F., Keogh J.S.. 2019. How mountains shape biodiversity: the role of the Andes in biogeography, diversification, and reproductive biology in South America’s most species-rich lizard radiation (Squamata: Liolaemidae). Evolution 73:214–230. PubMed
Fattahi A., Rastegar-Pouyani N., Rastegar-Pouyani E., Karamiani R., Yousefkhani S.S.H., Fathinia B.. 2020. Molecular phylogeny and taxonomic evaluation of the genus Asaccus Dixon and Anderson, 1973 (Reptilia: Phyllodactylidae) in Iran. Herpetol. J. 30:207–214.
Favre A., Päckert M., Pauls S.U., Jähnig S.C., Uhl D., Michalak I., Muellner-Riehl A.N.. 2015. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. Camb. Philos. Soc. 90:236–253. PubMed
Ficetola G.F., Falaschi M., Bonardi A., Padoa-Schioppa E., Sindaco R.. 2018. Biogeographical structure and endemism pattern in reptiles of the Western Palearctic. Prog Phys Geogr: Earth Environ. 42:220–236.
Flower B.P., Kennett J.P.. 1994. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 108:537–555.
Gable S.M., Mendez J.M., Bushroe N.A., Wilson A., Byars M.I., Tollis M.. 2023. The state of squamate genomics: past, present, and future of genome research in the most speciose terrestrial vertebrate order. Genes. 14:1387. PubMed PMC
Garcia-Porta J., Simó-Riudalbas M., Robinson M., Carranza S.. 2017. Diversification in arid mountains: biogeography and cryptic diversity of Pristurus rupestris rupestris in Arabia. J. Biogeogr. 44:1694–1704.
Gebauer J., Luedeling E., Hammer K., Nagieb M., Buerkert A.. 2007. Mountain oases in northern Oman: An environment for evolution and in situ conservation of plant genetic resources. Genet. Resour. Crop Evol. 54:465–481.
Ghazanfar S.A. 1991. Vegetation structure and phytogeography of Jabal Shams, an Arid Mountain in Oman. J. Biogeogr. 18:299.
Glennie K.W. 2006. Oman’s geological heritage. London: Stacey international.
Glennie K.W., Singhvi A.K.. 2002. Event stratigraphy, paleoenvironment and chronology of SE Arabian deserts. Quat. Sci. Rev. 21:853–869.
Hansen J., Sato M., Russell G., Kharecha P.. 2013. Climate sensitivity, sea level and atmospheric carbon dioxide. Philos. Trans. A Math Phys. Eng. Sci. 371:20120294. PubMed PMC
Hansman R.J., Ring U., Thomson S.N., den Brok B., Stübner K.. 2017. Late eocene uplift of the Al Hajar mountains, Oman, supported by stratigraphy and low-temperature thermochronology. Tectonics. 36:3081–3109.
Heads M. 2019. Passive uplift of plant and animal populations during mountain‐building. Cladistics. 35(5):550–572. doi: 10.1111/cla.12368 PubMed DOI
Hovmöller R., Lacey Knowles L., Kubatko L.S.. 2013. Effects of missing data on species tree estimation under the coalescent. Mol. Phylogenet. Evol. 69:1057–1062. PubMed
Hughes C.E., Atchison G.W.. 2015. The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. New Phytol. 207(2):275–282. doi: 10.1111/nph.13230 PubMed DOI
Jacobs J., Thomas R.J., Ksienzyk A.K., Dunkl I.. 2015. Tracking the Oman Ophiolite to the surface - New fission track and (U-Th)/He data from the Aswad and Khor Fakkan Blocks, United Arab Emirates. Tectonophysics. 644-645:68–80.
Jiang W., Chen S.-Y., Wang H., Li D.-Z., Wiens J.J.. 2014. Should genes with missing data be excluded from phylogenetic analyses? Mol. Phylogenet. Evol. 80:308–318. PubMed
Kohli B.A., Miyajima R.J., Jarzyna M.A.. 2022. Elevational diversity patterns of rodents differ between wet and arid mountains. Glob. Ecol. Biogeogr. 31(9):1726–1740. doi: 10.1111/geb.13552 DOI
Korner C., Spehn E.M.. 2002. Mountain biodiversity: a global assessment. The Parthenon Publishing Group. ISBN 9781842140918.
Kotwicki V., al Sulaimani Z.. 2009. Climates of the Arabian Peninsula – past, present, future. Int. J. Clim. Change Strategies Manage. 1:297–310.
Kozlov A.M., Darriba D., Flouri T., Morel B., Stamatakis A.. 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35:4453–4455. PubMed PMC
Landis M.J., Matzke N.J., Moore B.R., Huelsenbeck J.P.. 2013. Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 62:789–804. PubMed PMC
Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B.. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34:772–773. PubMed
Leaché A.D., Davis H.R., Singhal S., Fujita M.K., Lahti M.E., Zamudio K.R.. 2021. Phylogenomic assessment of biodiversity using a reference-based taxonomy: an example with horned lizards (Phrynosoma). Front. Ecol. Evol. 9:678110. doi: https://doi.org/10.3389/fevo.2021.678110 DOI
Leaché A.D., Fujita M.K., Minin V.N., Bouckaert R.R.. 2014. Species delimitation using genome-wide SNP data. Syst. Biol. 63:534–542. PubMed PMC
Leaché A.D., Zhu T., Rannala B., Yang Z.. 2019. The spectre of too many species. Syst. Biol. 68:168–181. PubMed PMC
Li J., Li Q., Wu Y., Ye L., Liu H., Wei J., Huang X., Meireles J.E.. 2021. Mountains act as museums and cradles for hemipteran insects in China: evidence from patterns of richness and phylogenetic structure. Glob. Ecol. Biogeogr. 30(5):1070–1085. doi: 10.1111/geb.13276 DOI
Madriñán S., Cortés A.J., Richardson J.E.. 2013. Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Front. Genet. 4. doi: 10.3389/fgene.2013.00192 PubMed DOI PMC
Marcus J., Ha W., Barber R.F., Novembre J.. 2021. Fast and flexible estimation of effective migration surfaces. eLife 10:e61927. doi: https://doi.org/10.7554/eLife.61927 PubMed DOI PMC
Mastretta-Yanes A., Xue A.T., Moreno-Letelier A., Jorgensen T.H., Alvarez N., Piñero D., Emerson B.C.. 2018. Long-term in situ persistence of biodiversity in tropical sky islands revealed by landscape genomics. Mol. Ecol. 27:432–448. PubMed
Matzke N.J. 2018. BioGeoBEARS: BioGeography with Bayesian (and Likelihood) evolutionary analysis in R scripts. Version 1.1.1, published on GitHub on November 6, 2018.
McCain C.M. 2010. Global analysis of reptile elevational diversity. Glob. Ecol. Biogeogr. 19:541–553.
McDonald P.J., Jobson P., Köhler F., Nano C.E.M., Oliver P.M.. 2021. The living heart: climate gradients predict desert mountain endemism. Ecol. Evol. 11:4366–4378. PubMed PMC
Merckx V.S.F.T., Hendriks K.P., Beentjes K.K., Mennes C.B., Becking L.E., Peijnenburg K.T.C.A., Afendy A., Arumugam N., De Boer H., Biun A., Buang M.M., Chen P.P., Chung A.Y.C., Dow R., Feijen F.A.A., Feijen H., Soest C.F.V., Geml J., Geurts R., Gravendeel B., Hovenkamp P., Imbun P., Ipor I., Janssens S.B., Jocqué M., Kappes H., Khoo E., Koomen P., Lens F., Majapun R.J., Morgado L.N., Neupane S., Nieser N., Pereira J.T., Rahman H., Sabran S., Sawang A., Schwallier R.M., Shim P.S., Smit H., Sol N., Spait M., Stech M., Stokvis F., Sugau J.B., Suleiman M., Sumail S., Thomas D.C., Van Tol J., Tuh F.Y.Y., Yahya B.E., Nais J., Repin R., Lakim M., Schilthuizen M.. 2015. Evolution of endemism on a young tropical mountain. Nature. 524:347–350. PubMed
Miller M.R., Dunham J.P., Amores A., Cresko W.A., Johnson E.A.. 2007. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 17:240–248. PubMed PMC
Mirarab S., Bayzid M.S., Warnow T.. 2016. Evaluating summary methods for multilocus species tree estimation in the presence of incomplete lineage sorting. Syst. Biol. 65:366–380. PubMed
Nannan L., Huamiao L., Yan J., Xingan L., Yang L., Tianjiao W., Jinming H., Qingsheng N., Xiumei X.. 2022. Geometric morphology and population genomics provide insights into the adaptive evolution of Apis cerana in Changbai Mountain. BMC Genomics 23:64. doi: https://doi.org/10.1186/s12864-022-08298-x PubMed DOI PMC
Noroozi J., Talebi A., Doostmohammadi M., Rumpf S.B., Linder H.P., Schneeweiss G.M.. 2018. Hotspots within a global biodiversity hotspot - areas of endemism are associated with high mountain ranges. Sci. Rep. 8:1–10. PubMed PMC
O’Leary S.J., Puritz J.B., Willis S.C., Hollenbeck C.M., Portnoy D.S.. 2018. These aren’t the loci you’e looking for: principles of effective SNP filtering for molecular ecologists. Mol. Ecol. 27:3193–3206. PubMed
Ogilvie H.A., Bouckaert R.R., Drummond A.J.. 2017. StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates. Mol. Biol. Evol. 34:2101–2114. PubMed PMC
Perrigo A., Hoorn C., Antonelli A.. 2020. Why mountains matter for biodiversity. J. Biogeogr. 47:315–325.
Peterson B.K., Orlando L., Weber J.N., Kay E.H., Fisher H.S., Hoekstra H.E.. 2012. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One. 7(5):e37135–e37135. doi: 10.1371/journal.pone.0037135 PubMed DOI PMC
Pinheiro J, Bates D, R Core Team. 2023. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-162, https://CRAN.R-project.org/package=nlme
Pokorny L., Riina R., Mairal M., Meseguer A.S., Culshaw V., Cendoya J., Serrano M., Carbajal R., Ortiz S., Heuertz M., Sanmartín I.. 2015. Living on the edge: timing of rand flora disjunctions congruent with ongoing aridification in Africa. Front. Genet. 6:154. doi: https://doi.org/10.3389/fgene.2015.00154 PubMed DOI PMC
Pola L., Crochet P.A., Geniez P., Shobrak M., Busais S., Jablonski D., Masroor R., Abduraupov T., Carranza S., Šmíd J.. 2024. Some like it hot: past and present phylogeography of a desert dwelling gecko across the Arabian Peninsula. J. Biogeogr. 51:1244–1258.
Porter W.P., Gates D.M.. 1969. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39:227–244.
Pyron R.A., Hendry C.R., Chou V.M., Lemmon E.M., Lemmon A.R., Burbrink F.T.. 2014. Effectiveness of phylogenomic data and coalescent species-tree methods for resolving difficult nodes in the phylogeny of advanced snakes (Serpentes: Caenophidia). Mol. Phylogenet. Evol. 81:221–231. PubMed
R Core Team. 2021. R: a language and environment for statistical computing.
Rahbek C., Borregaard M.K., Antonelli A., Colwell R.K., Holt B.G., Nogues-Bravo D., Rasmussen C.M.O., Richardson K., Rosing M.T., Whittaker R.J., Fjeldså J.. 2019b. Building mountain biodiversity: geological and evolutionary processes. Science 365:1114–1119. PubMed
Rahbek C., Borregaard M.K., Colwell R.K., Dalsgaard B., Holt B.G., Morueta-Holme N., Nogues-Bravo D., Whittaker R.J., Fjeldså J.. 2019a. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365:1108–1113. PubMed
Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A.. 2018. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 67:901–904. PubMed PMC
Ree R.H., Sanmartín I.. 2018. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 45:741–749.
Ree R.H., Smith S.A.. 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57:4–14. PubMed
Renner S.S. 2016. Available data point to a 4-km-high Tibetan Plateau by 40 Ma, but 100 molecular-clock papers have linked supposed recent uplift to young node ages. J. Biogeogr. 43:1479–1487.
Revell L.J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3:217–223.
Ribas C.C., Moyle R.G., Miyaki C.Y., Cracraft J.. 2007. The assembly of montane biotas: linking Andean tectonics and climatic oscillations to independent regimes of diversification in Pionus parrots. Proc. R. Soc. B: Biol. Sci. 274(1624):2399–2408. doi: 10.1098/rspb.2007.0613 PubMed DOI PMC
Rodgers D.W., Gunatilaka A.. 2003. Bajada formation by monsoonal erosion of a subaerial forebulge, Sultanate of Oman. Sediment. Geol. 154:127–146.
Ronquist F. 1997. Dispersal-Vicariance Analysis: A New Approach to the Quantification of Historical Biogeography. Syst. Biol. 46:195–203.
Roycroft E., Fabre P.-H., MacDonald A.J., Moritz C., Moussalli A., Rowe K.C.. 2022. New Guinea uplift opens ecological opportunity across a continent. Curr. Biol. 32:4215–4224.e3. PubMed
Simó-Riudalbas M., de Pous P., Els J., Jayasinghe S., Péntek-Zakar E., Wilms T., Al-Saadi S., Carranza S.. 2017. Cryptic diversity in Ptyodactylus (Reptilia: Gekkonidae) from the northern Hajar Mountains of Oman and the United Arab Emirates uncovered by an integrative taxonomic approach. PLoS One. 12:1–25. PubMed PMC
Simó-Riudalbas M., Tamar K., Šmíd J., Mitsi P., Sindaco R., Chirio L., Carranza S.. 2019. Biogeography of Mesalina (Reptilia Lacertidae), with special emphasis on the Mesalina adramitana group from Arabia and the Socotra Archipelago. Mol. Phylogenet. Evol. 137:300–312. PubMed
Simó-Riudalbas M., Tarroso P., Papenfuss T., Al-Sariri T., Carranza S.. 2018. Systematics, biogeography and evolution of Asaccus gallagheri (Squamata, Phyllodactylidae) with the description of a new endemic species from Oman. Syst. Biodivers. 16:323–339.
Šmíd J., Sindaco R., Shobrak M., Busais S., Tamar K., Aghová T., Simó-Riudalbas M., Tarroso P., Geniez P., Crochet P.A., Els J., Burriel-Carranza B., Tejero-Cicuéndez H., Carranza S.. 2021. Diversity patterns and evolutionary history of Arabian squamates. J. Biogeogr. 48:1183–1199.
Smith B.T., McCormack J.E., Cuervo A.M., Hickerson M.J., Aleixo A., Cadena C.D., Pérez-Emán J., Burney C.W., Xie X., Harvey M.G., Faircloth B.C., Glenn T.C., Derryberry E.P., Prejean J., Fields S., Brumfield R.T.. 2014. The drivers of tropical speciation. Nature 515:406–409. PubMed
Stange M., Sánchez-Villagra M.R., Salzburger W., Matschiner M.. 2018. Bayesian divergence-time estimation with genome-wide single-nucleotide polymorphism data of sea catfishes (Ariidae) supports miocene closure of the panamanian isthmus. Syst. Biol. 67:681–699. PubMed PMC
Stanton D.W.G., Frandsen P., Waples R.K., Heller R., Russo I.R.M., Orozco-terWengel P.A., Pedersen C.E.T., Siegismund H.R., Bruford M.W.. 2019. More grist for the mill? Species delimitation in the genomic era and its implications for conservation. Conserv. Genet. 20:101–113.
Stöck M., Dufresnes C., Litvinchuk S.N., Lymberakis P., Biollay S., Berroneau M., Borzée A., Ghali K., Ogielska M., Perrin N.. 2012. Cryptic diversity among Western Palearctic tree frogs: postglacial range expansion, range limits, and secondary contacts of three European tree frog lineages (Hyla arborea group). Mol. Phylogenet. Evol. 65:1–9. PubMed
Streicher J.W., Wiens J.J.. 2017. Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families. Biol. Lett. 13:20170393. doi: https://doi.org/10.1098/rsbl.2017.0393 PubMed DOI PMC
Sukumaran J., Knowles L.L.. 2017. Multispecies coalescent delimits structure, not species. Proc. Natl. Acad. Sci. U.S.A. 114:1607–1612. PubMed PMC
Talavera G., Castresana J.. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56:564–577. PubMed
Tallowin O., Allison A., Algar A.C., Kraus F., Meiri S.. 2017. Papua New Guinea terrestrial-vertebrate richness: Elevation matters most for all except reptiles. J. Biogeogr. 44(8):1734–1744.
Tamar K., Chirio L., Shobrak M., Busais S., Carranza S.. 2019a. Using multilocus approach to uncover cryptic diversity within Pseudotrapelus lizards from Saudi Arabia. Saudi J. Biol. Sci. 26:1442–1449. PubMed PMC
Tamar K., Mitsi P., Carranza S.. 2019b. Cryptic diversity revealed in the leaf-toed gecko Asaccus montanus (Squamata, Phyllodactylidae) from the Hajar Mountains of Arabia. J. Zool. Syst. Evol. Res. 57:369–382.
Tamar K., Scholz S., Crochet P.A., Geniez P., Meiri S., Schmitz A., Wilms T., Carranza S.. 2016. Evolution around the Red Sea: Systematics and biogeography of the agamid genus Pseudotrapelus (Squamata: Agamidae) from North Africa and Arabia. Mol. Phylogenet. Evol. 97:55–68. PubMed
Tejero-Cicuéndez H., Patton A.H., Caetano D.S., Šmíd J., Harmon L.J., Carranza S.. 2022. Reconstructing squamate biogeography in afro-arabia reveals the influence of a complex and dynamic geologic past. Syst. Biol. 71:261–272. PubMed PMC
Thompson A.W., Betancur-R R., López-Fernández H., Ortí G.. 2014. A time-calibrated, multi-locus phylogeny of piranhas and pacus (Characiformes: Serrasalmidae) and a comparison of species tree methods. Mol. Phylogenet. Evol. 81:242–257. PubMed
Tonini J.F.R., Beard K.H., Ferreira R.B., Jetz W., Pyron R.A.. 2016. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204:23–31.
Tonini J.F.R., Moore A., Stern D., Shcheglovitova M., Ortí G.. 2015. Concatenation and species tree methods exhibit statistically indistinguishable accuracy under a range of simulated conditions. PLOS Curr.: Tree Life 7:ecurrents.tol.34260cc27551a527b124ec5f6334b6be. PubMed PMC
Uetz P., Freed P, Aguilar R., Reyes F.Hošek J. (eds.). 2023. The Reptile Database. Available from: http://www.reptile-database.org, accessed March, 2022.
Vilaça S.T., Piccinno R., Rota-Stabelli O., Gabrielli M., Benazzo A., Matschiner M., Soares L.S., Bolten A.B., Bjorndal K.A., Bertorelle G.. 2021. Divergence and hybridization in sea turtles: Inferences from genome data show evidence of ancient gene flow between species. Mol. Ecol. 30:6178–6192. PubMed PMC
Wang L.G., Lam T.T.Y., Xu S., Dai Z., Zhou L., Feng T., Guo P., Dunn C.W., Jones B.R., Bradley T., Zhu H., Guan Y., Jiang Y., Yu G.. 2020. Treeio: an R package for phylogenetic tree input and output with richly annotated and associated data. Mol. Biol. Evol. 37:599–603. PubMed PMC
Wickham H., Averick M., Bryan J., Chang W., McGowan L.D., François R., Grolemund G., Hayes A., Henry L., Hester J., Kuhn M., Pedersen T.L., Miller E., Bache S.M., Müller K., Ooms J., Robinson D., Seidel D.P., Spinu V., Takahashi K., Vaughan D., Wilke C., Woo K., Yutani H.. 2019. Welcome to the {tidyverse}. J. Open Source Softw. 4:1686.
Yu G. 2020. Using ggtree to visualize data on tree-like structures. Curr Protoc Bioinform. 69:e96. PubMed
Zachos J., Pagani M., Sloan L., Thomas E., Billups K.. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 292:686–693. PubMed
Zachos J.C., Dickens G.R., Zeebe R.E.. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature. 451:279–283. PubMed