Exogenous surfactant for lung contusion causing ARDS: A systematic review of clinical and experimental reports
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu systematický přehled, časopisecké články
Grantová podpora
SV/FVZ202305
Ministry of Education, Youth and Sports of the Czech Republic
DZRO-FVZ22-KLINIKA II
Ministry of Defence of the Czech Republic
DRO(UHHK,00179906)
Supported by Ministry of Health of the Czech Republic
PubMed
38778673
PubMed Central
PMC11112292
DOI
10.1111/crj.13776
Knihovny.cz E-zdroje
- Klíčová slova
- exogenous surfactant, lung contusion, pulmonary contusion, pulmonary surfactant, surface‐active agents,
- MeSH
- bronchoskopie metody MeSH
- lidé MeSH
- plicní surfaktanty * aplikace a dávkování terapeutické užití MeSH
- poškození plic * farmakoterapie etiologie MeSH
- syndrom dechové tísně * farmakoterapie etiologie MeSH
- umělé dýchání metody MeSH
- výsledek terapie MeSH
- zhmoždění * farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
- Názvy látek
- plicní surfaktanty * MeSH
This systematic review aimed to summarize the available data on the treatment of pulmonary contusions with exogenous surfactants, determine whether this treatment benefits patients with severe pulmonary contusions, and evaluate the optimal type of surfactant, method of administration, and drug concentration. Three databases (MEDline, Scopus, and Web of Science) were searched using the following keywords: pulmonary surfactant, surface-active agents, exogenous surfactant, pulmonary contusion, and lung contusion for articles published between 1945 and February 2023, with no language restrictions. Four reviewers independently rated the studies for inclusion, and the other four reviewers resolved conflicts. Of the 100 articles screened, six articles were included in the review. Owing to the limited number of papers on this topic, various types of studies were included (two clinical studies, two experiments, and two case reports). In all the studies, surfactant administration improved the selected ventilation parameters. The most frequently used type of surfactant was Curosurf® in the concentration of 25 mg/kg of ideal body weight. In most studies, the administration of a surfactant by bronchoscopy into the segmental bronchi was the preferable way of administration. In both clinical studies, patients who received surfactants required shorter ventilation times. The administration of exogenous surfactants improved ventilatory parameters and, thus, reduced the need for less aggressive artificial lung ventilation and ventilation days. The animal-derived surfactant Curosurf® seems to be the most suitable substance; however, the ideal concentration remains unclear. The ideal route of administration involves a bronchoscope in the segmental bronchi.
Faculty of Health Studies Technical University in Liberec Liberec Czech Republic
Faculty of Medicine in Hradec Kralove Charles University Prague Czech Republic
Zobrazit více v PubMed
Dogrul BN, Kiliccalan I, Asci ES, Peker SC. Blunt Trauma Related Chest Wall and Pulmonary Injuries: An Overview. Chinese Journal of Traumatology – English Edition. Vol. 23. Elsevier B.V.; 2020:125‐138. PubMed PMC
Ahmad Ganie F, Lone H, Nabi Lone G, et al. Lung contusion: a clinico‐pathological entity with unpredictable clinical course. Bull. Emerg. Trauma. 2013;1:7‐16. PubMed PMC
Mardani P, Moayedi Rad M, Paydar S, et al. Evaluation of lung contusion, associated injuries, and outcome in a major trauma center in Shiraz, Southern Iran. Emerg. Med. Int. 2021;2021:1‐5. doi:10.1155/2021/3789132 PubMed DOI PMC
Jin H, Tang LQ, Pan ZG, et al. Ten‐year retrospective analysis of multiple trauma complicated by pulmonary contusion. Mil. Med. Res. 2014;1(1):7. doi:10.1186/2054-9369-1-7 PubMed DOI PMC
Keskin Y, Bedel C, Beceren NG. Investigation of histopathological and radiological effects of surfactant treatment in an experimental female rat model of lung contusion. Iran J. Basic Med. Sci. 2019;1153‐1157. PubMed PMC
Rendeki S, Molnár TF. Pulmonary contusion. J. Thorac. Dis. 2019;11:141‐151. PubMed PMC
Gallagher JJ. Management of blunt pulmonary injury. AACN Adv. Crit. Care. 2014;25(4):375‐386. doi:10.1097/NCI.0000000000000059 PubMed DOI
Landeen C, Smith HL. Examination of pneumonia risks and risk levels in trauma patients with pulmonary contusion. J. Trauma Nurs. 2014;21(2):41‐49. doi:10.1097/JTN.0000000000000029 PubMed DOI
Zhou D, Qiu J, Liang Y, Dai W, Yuan D, Zhou J. Epidemiological analysis of 9,596 patients with acute lung injury at Chinese military hospitals. Exp. Ther. Med. 2017;13(3):983‐988. doi:10.3892/etm.2017.4068 PubMed DOI PMC
Sayed MS, Elmeslmany KA, Elsawy AS, Mohamed NA. The validity of quantifying pulmonary contusion extent by lung ultrasound score for predicting ARDS in blunt thoracic trauma. Crit. Care Res. Prac. 2022;2022:1‐9. doi:10.1155/2022/3124966 PubMed DOI PMC
Miller C, Stolarski A, Ata A, et al. Impact of blunt pulmonary contusion in polytrauma patients with rib fractures. Am. J. Surg. 2019;218(1):51‐55. doi:10.1016/j.amjsurg.2019.01.027 PubMed DOI
Požgain Z, Kristek D, Lovrić I, et al. Pulmonary contusions after blunt chest trauma: clinical significance and evaluation of patient management. Eur. J. Trauma Emerg. Surg. 2018;44(5):773‐777. doi:10.1007/s00068-017-0876-5 PubMed DOI
Alisha C, Gajanan G, Jyothi H. Risk factors affecting the prognosis in patients with pulmonary contusion following chest trauma. J. Clin. Diagn. Res. 2015;9(8):OC17‐OC19. doi:10.7860/JCDR/2015/13285.6375 PubMed DOI PMC
Finkbeiner R, Krinner S, Langenbach A, Besendörfer M, Schulz‐Drost S. Age distribution and concomitant injuries in pulmonary contusion: an analysis based on routine data. Thorac. Cardiovasc. Surg. 2018;66(8):678‐685. doi:10.1055/s-0038-1667323 PubMed DOI
Daurat A, Millet I, Roustan JP, et al. Thoracic trauma severity score on admission allows to determine the risk of delayed ARDS in trauma patients with pulmonary contusion. Injury. 2016;47(1):147‐153. doi:10.1016/j.injury.2015.08.031 PubMed DOI
Prunet B, Bourenne J, David JS, et al. Patterns of invasive mechanical ventilation in patients with severe blunt chest trauma and lung contusion: a French multicentric evaluation of practices. J. Intensive Care Soc. 2019;20(1):46‐52. doi:10.1177/1751143718767060 PubMed DOI PMC
Simon B, Ebert J, Bokhari F, et al. Management of pulmonary contusion and flail chest: an eastern association for the surgery of trauma practice management guideline. J. Trauma Acute Care Surg. 2012;73(5):351‐361. doi:10.1097/TA.0b013e31827019fd PubMed DOI
Marraro GA, Denaro C, Spada C, Luchetti M, Giansiracusa C. Selective medicated (saline + natural surfactant) bronchoalveolar lavage in unilateral lung contusion. A clinical randomized controlled trial. J. Clin. Monit. Comput. 2010;24(1):73‐81. doi:10.1007/s10877-009-9213-9 PubMed DOI
Hentschel R, Bohlin K, van Kaam A, Fuchs H, Danhaive O. Surfactant Replacement Therapy: From Biological Basis to Current Clinical Practice. Pediatric Research. Vol. 88. Springer Nature; 2020:176‐183. doi:10.1038/s41390-020-0750-8 PubMed DOI PMC
Berland M, Oger M, Cauchois E, Retornaz K, Arnoux V, Dubus JC. Pulmonary contusion after bumper car collision: case report and review of the literature. Respir. Med. Case. Rep. 2018;25:293‐295. doi:10.1016/j.rmcr.2018.10.006 PubMed DOI PMC
Ma X, Dong Z, Wang Y, Gu P, Fang J, Gao S. Risk factors analysis of thoracic trauma complicated with acute respiratory distress syndrome and observation of curative effect of lung‐protective ventilation. Front. Surg. 2022;8:1‐7. doi:10.3389/fsurg.2021.826682 PubMed DOI PMC
Suarez‐Sipmann F, Blanch L. Physiological markers for acute respiratory distress syndrome: let's get more efficient! Am. Thorac. Soc. 2019;260‐261. PubMed
Fanelli V, Vlachou A, Ghannadian S, Simonetti U, Slutsky AS, Zhang H. Acute respiratory distress syndrome: new definition, current and future therapeutic options. J. Thorac. Dis. 2013;5:326‐334. PubMed PMC
Dang M, Bennett S, Powell EK, Tilney PVR. Extracorporeal Membrane Oxygenation in a 39‐Year‐Old Man With Traumatic Pulmonary Contusions and Acute Respiratory Distress Syndrome. Air Medical Journal. Vol. 37. Mosby Inc.; 2018:221‐224. PubMed
Lopez‐Rodriguez E, Pérez‐Gil J. Structure‐Function Relationships in Pulmonary Surfactant Membranes: From Biophysics to Therapy. Biochimica et Biophysica Acta ‐ Biomembranes. Vol. 1838. Elsevier; 2014:1568‐1585. doi:10.1016/j.bbamem.2014.01.028 PubMed DOI
El‐Gendy N, Kaviratna A, Berkland C, Dhar P. Delivery and performance of surfactant replacement therapies to treat pulmonary disorders. Therapeut. Deliv. 2013;4:951‐980. PubMed PMC
Hidalgo A, Cruz A, Pérez‐Gil J. Barrier or carrier? Pulmonary surfactant and drug delivery. Eur. J. Pharm. Biopharm. 2015;117–127:117‐127. doi:10.1016/j.ejpb.2015.02.014 PubMed DOI
Parra E, Pérez‐Gil J. Composition, Structure and Mechanical Properties Define Performance of Pulmonary Surfactant Membranes and Films. Chemistry and Physics of Lipids. Vol. 185. Elsevier Ireland Ltd; 2015:153‐175. doi:10.1016/j.chemphyslip.2014.09.002 PubMed DOI
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta‐analyses of studies that evaluate health care interventions: explanation and elaboration. J. Clin. Epidemiol. 2009;62(10):1‐34. doi:10.1016/j.jclinepi.2009.06.006 PubMed DOI
Tsangaris I, Galiatsou E, Kostanti E, Nakos G. The effect of exogenous surfactant in patients with lung contusions and acute lung injury. Intensive Care Med. 2007;851–855(5):851. doi:10.1007/s00134-007-0597-z PubMed DOI
Strohmaier W, Trupka A, Pfeiler C, et al. Bilateral lavage with diluted surfactant improves lung function after unilateral lung contusion in pigs. Crit. Care Med. 2005;2286–2293(10):2286‐2293. doi:10.1097/01.CCM.0000182819.11807.16 PubMed DOI
Sklienka P, Maca J, Bursa F, et al. Exogenous surfactant as a bridge to prolonged “total lung rest” in severely injured patient during extracorporeal membrane oxygenation. J. Artif. Organs. 2018;21(3):374‐377. doi:10.1007/s10047-018-1037-2 PubMed DOI
Schulz S, Wiebalck A, Frankenberg C, Sivitanidis E, Zenz M. Low‐dose surfactant instillation during extracorporeal membrane oxygenation therapy in a patient with adult respiratory distress syndrome and secondary atelectasis after chest contusion. J. Cardiothorac. Vasc. Anesth. 2000;14(1):59‐62. doi:10.1016/S1053-0770(00)90058-2 PubMed DOI
Guagliardo R, Pérez‐Gil J, de Smedt S, Raemdonck K. Pulmonary Surfactant and Drug Delivery: Focusing on the Role of Surfactant Proteins. Journal of Controlled Release. Vol. 291. Elsevier B.V.; 2018:116‐126. PubMed
Pérez‐Gil J. A Recipe for a Good Clinical Pulmonary Surfactant. Biomedical Journal. Vol. 45. Elsevier B.V.; 2022:615‐628. PubMed PMC
Zebialowicz Ahlström J, Massaro F, Mikolka P, et al. Synthetic surfactant with a recombinant surfactant protein C analogue improves lung function and attenuates inflammation in a model of acute respiratory distress syndrome in adult rabbits. Respir. Res. 2019;20(1):245. doi:10.1186/s12931-019-1220-x PubMed DOI PMC
Wiseman LR, Bryson HM, Bevilacqua G, Bose C, Hallman M, Speer CP. Drug evaluation porcine‐derived lung surfactant a review of the therapeutic efficacy and clinical tolerability of a natural surfactant preparation (Curosurf) in neonatal respiratory distress syndrome. Drugs. 1994;48:386‐403. PubMed
Ramanathan R. Choosing a right surfactant for respiratory distress syndrome treatment. Neonatology. 2008;95(1):1‐5. doi:10.1159/000151749 PubMed DOI
Ruaro B, Confalonieri P, Pozzan R, et al. Severe COVID‐19 ARDS treated by bronchoalveolar lavage with diluted exogenous pulmonary surfactant as salvage therapy: in pursuit of the holy grail? J. Clin. Med. 2022;11(13):3577. doi:10.3390/jcm11133577 PubMed DOI PMC
Gattinoni L, Protti A, Caironi P, Carlesso E. Ventilator‐Induced Lung Injury: the Anatomical and Physiological Framework in Critical Care Medicine. Vol. 38. Lippincott Williams and Wilkins; 2010:539‐548. doi:10.1097/CCM.0b013e3181f1fcf7 PubMed DOI