Early Deletion of Neurod1 Alters Neuronal Lineage Potential and Diminishes Neurogenesis in the Inner Ear
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 AG060504
NIA NIH HHS - United States
R01 DC015135
NIDCD NIH HHS - United States
R01 DC015252
NIDCD NIH HHS - United States
PubMed
35252209
PubMed Central
PMC8894106
DOI
10.3389/fcell.2022.845461
PII: 845461
Knihovny.cz E-zdroje
- Klíčová slova
- Foxg1, Neurod1, auditory system, cochlear nuclei, hair cells, neurons, projections, vestibular system,
- Publikační typ
- časopisecké články MeSH
Neuronal development in the inner ear is initiated by expression of the proneural basic Helix-Loop-Helix (bHLH) transcription factor Neurogenin1 that specifies neuronal precursors in the otocyst. The initial specification of the neuroblasts within the otic epithelium is followed by the expression of an additional bHLH factor, Neurod1. Although NEUROD1 is essential for inner ear neuronal development, the different aspects of the temporal and spatial requirements of NEUROD1 for the inner ear and, mainly, for auditory neuron development are not fully understood. In this study, using Foxg1Cre for the early elimination of Neurod1 in the mouse otocyst, we showed that Neurod1 deletion results in a massive reduction of differentiating neurons in the otic ganglion at E10.5, and in the diminished vestibular and rudimental spiral ganglia at E13.5. Attenuated neuronal development was associated with reduced and disorganized sensory epithelia, formation of ectopic hair cells, and the shortened cochlea in the inner ear. Central projections of inner ear neurons with conditional Neurod1 deletion are reduced, unsegregated, disorganized, and interconnecting the vestibular and auditory systems. In line with decreased afferent input from auditory neurons, the volume of cochlear nuclei was reduced by 60% in Neurod1 mutant mice. Finally, our data demonstrate that early elimination of Neurod1 affects the neuronal lineage potential and alters the generation of inner ear neurons and cochlear afferents with a profound effect on the first auditory nuclei, the cochlear nuclei.
Department of Biology University of Iowa Iowa City IA United States
Laboratory of Molecular Pathogenesis Institute of Biotechnology CAS Vestec Czechia
Zobrazit více v PubMed
Abrams S. R., Reiter J. F. (2021). Ciliary Hedgehog Signaling Regulates Cell Survival to Build the Facial Midline. Elife 10, e68558. 10.7554/elife.68558 PubMed DOI PMC
Bermingham N. A., Hassan B. A., Price S. D., Vollrath M. A., Ben-Arie N., Eatock R. A., et al. (1999). Math1 : An Essential Gene for the Generation of Inner Ear Hair Cells. Science 284, 1837–1841. 10.1126/science.284.5421.1837 PubMed DOI
Bérubé N. G., Mangelsdorf M., Jagla M., Vanderluit J., Garrick D., Gibbons R. J., et al. (2005). The Chromatin-Remodeling Protein ATRX Is Critical for Neuronal Survival During Corticogenesis. J. Clin. Invest. 115, 258–267. 10.1172/jci200522329 PubMed DOI PMC
Bohuslavova R., Smolik O., Malfatti J., Berkova Z., Novakova Z., Saudek F., et al. (2021). NEUROD1 Is Required for the Early Alpha and Beta Endocrine Differentiation in the Pancreas. Int. J. Mol. Sci. 22, 6713. 10.3390/ijms22136713 PubMed DOI PMC
Brulet R., Matsuda T., Zhang L., Miranda C., Giacca M., Kaspar B. K., et al. (2017). NEUROD1 Instructs Neuronal Conversion in Non-reactive Astrocytes. Stem Cel Rep. 8, 1506–1515. 10.1016/j.stemcr.2017.04.013 PubMed DOI PMC
Cherry T. J., Wang S., Bormuth I., Schwab M., Olson J., Cepko C. L. (2011). NeuroD Factors Regulate Cell Fate and Neurite Stratification in the Developing Retina. J. Neurosci. 31, 7365–7379. 10.1523/jneurosci.2555-10.2011 PubMed DOI PMC
Dastidar S. G., Landrieu P. M. Z., D'Mello S. R. (2011). FoxG1 Promotes the Survival of Postmitotic Neurons. J. Neurosci. 31, 402–413. 10.1523/jneurosci.2897-10.2011 PubMed DOI PMC
Duggan C. D., DeMaria S., Baudhuin A., Stafford D., Ngai J. (2008). Foxg1 Is Required for Development of the Vertebrate Olfactory System. J. Neurosci. 28, 5229–5239. 10.1523/jneurosci.1134-08.2008 PubMed DOI PMC
Duncan J. S., Fritzsch B. (2013). Continued Expression of GATA3 Is Necessary for Cochlear Neurosensory Development. PLoS One 8, e62046. 10.1371/journal.pone.0062046 PubMed DOI PMC
Dvorakova M., Macova I., Bohuslavova R., Anderova M., Fritzsch B., Pavlinkova G. (2020). Early Ear Neuronal Development, but Not Olfactory or Lens Development, Can Proceed Without SOX2. Dev. Biol. 457, 43–56. 10.1016/j.ydbio.2019.09.003 PubMed DOI PMC
Eagleson K. L., Schlueter McFadyen-Ketchum L. J., Ahrens E. T., Mills P. H., Does M. D., Nickols J., et al. (2007). Disruption of Foxg1 Expression by Knock-In of Cre Recombinase: Effects on the Development of the Mouse Telencephalon. Neuroscience 148, 385–399. 10.1016/j.neuroscience.2007.06.012 PubMed DOI PMC
Elliott K. L., Fritzsch B., Duncan J. S. (2018). Evolutionary and Developmental Biology Provide Insights into the Regeneration of Organ of Corti Hair Cells. Front Cel Neurosci 12, 252. 10.3389/fncel.2018.00252 PubMed DOI PMC
Elliott K. L., Pavlínková G., Chizhikov V. V., Yamoah E. N., Fritzsch B. (2021). Development in the Mammalian Auditory System Depends on Transcription Factors. Ijms 22, 4189. 10.3390/ijms22084189 PubMed DOI PMC
Evsen L., Sugahara S., Uchikawa M., Kondoh H., Wu D. K. (2013). Progression of Neurogenesis in the Inner Ear Requires Inhibition of Sox2 Transcription by Neurogenin1 and Neurod1. J. Neurosci. 33, 3879–3890. 10.1523/jneurosci.4030-12.2013 PubMed DOI PMC
Filova I., Dvorakova M., Bohuslavova R., Pavlinek A., Elliott K. L., Vochyanova S., et al. (2020). Combined Atoh1 and Neurod1 Deletion Reveals Autonomous Growth of Auditory Nerve Fibers. Mol. Neurobiol. 57, 5307–5323. 10.1007/s12035-020-02092-0 PubMed DOI PMC
Fritzsch B., Duncan J. S., Kersigo J., Gray B., Elliott K. L. (2016). Neuroanatomical Tracing Techniques in the Ear: History, State of the Art, and Future Developments. Springer, 243–262. 10.1007/978-1-4939-3615-1_14 PubMed DOI PMC
Fritzsch B., Elliott K. L. (2017). Gene, Cell, and Organ Multiplication Drives Inner Ear Evolution. Dev. Biol. 431, 3–15. 10.1016/j.ydbio.2017.08.034 PubMed DOI PMC
Fritzsch B., Pan N., Jahan I., Duncan J. S., Kopecky B. J., Elliott K. L., et al. (2013). Evolution and Development of the Tetrapod Auditory System: An Organ of Corti-Centric Perspective. Evol. Dev. 15, 63–79. 10.1111/ede.12015 PubMed DOI PMC
Fritzsch B., Straka H. (2014). Evolution of Vertebrate Mechanosensory Hair Cells and Inner Ears: Toward Identifying Stimuli that Select Mutation Driven Altered Morphologies. J. Comp. Physiol. A. 200, 5–18. 10.1007/s00359-013-0865-z PubMed DOI PMC
Frullanti E., Amabile S., Lolli M. G., Bartolini A., Livide G., Landucci E., et al. (2016). Altered Expression of Neuropeptides in FoxG1-Null Heterozygous Mutant Mice. Eur. J. Hum. Genet. 24, 252–257. 10.1038/ejhg.2015.79 PubMed DOI PMC
Goebbels S., Bode U., Pieper A., Funfschilling U., Schwab M. H., Nave K.-A. (2005). Cre/loxP-mediated Inactivation of the bHLH Transcription Factor Gene NeuroD/BETA2. Genesis 42, 247–252. 10.1002/gene.20138 PubMed DOI
Goodrich L. V. (2016). Early Development of the Spiral Ganglion, the Primary Auditory Neurons of the Mammalian Cochlea. Springer 1, 11–48. 10.1007/978-1-4939-3031-9_2 DOI
Guo Z., Zhang L., Wu Z., Chen Y., Wang F., Chen G. (2014). In Vivo Direct Reprogramming of Reactive Glial Cells into Functional Neurons After Brain Injury and in an Alzheimer's Disease Model. Cell Stem Cell 14, 188–202. 10.1016/j.stem.2013.12.001 PubMed DOI PMC
Hébert J. M., McConnell S. K. (2000). Targeting of Cre to the Foxg1 (BF-1) Locus Mediates loxP Recombination in the Telencephalon and Other Developing Head Structures. Dev. Biol. 222, 296–306. 10.1006/dbio.2000.9732 PubMed DOI
Hevner R. F., Hodge R. D., Daza R. A. M., Englund C. (2006). Transcription Factors in Glutamatergic Neurogenesis: Conserved Programs in Neocortex, Cerebellum, and Adult hippocampus. Neurosci. Res. 55, 223–233. 10.1016/j.neures.2006.03.004 PubMed DOI
Huang E. J., Liu W., Fritzsch B., Bianchi L. M., Reichardt L. F., Xiang M. (2001). Brn3a Is a Transcriptional Regulator of Soma Size, Target Field Innervation and Axon Pathfinding of Inner Ear Sensory Neurons. Development 128, 2421–2432. 10.1242/dev.128.13.2421 PubMed DOI PMC
Jahan I., Kersigo J., Pan N., Fritzsch B. (2010). Neurod1 Regulates Survival and Formation of Connections in Mouse Ear and Brain. Cell Tissue Res 341, 95–110. 10.1007/s00441-010-0984-6 PubMed DOI PMC
Jahan I., Pan N., Kersigo J., Fritzsch B. (2010). Neurod1 Suppresses Hair Cell Differentiation in Ear Ganglia and Regulates Hair Cell Subtype Development in the Cochlea. PLoS One 5, e11661. 10.1371/journal.pone.0011661 PubMed DOI PMC
Kasberg A. D., Brunskill E. W., Steven Potter S. (2013). SP8 Regulates Signaling Centers During Craniofacial Development. Dev. Biol. 381, 312–323. 10.1016/j.ydbio.2013.07.007 PubMed DOI PMC
Kawaguchi D., Sahara S., Zembrzycki A., O’Leary D. D. M. (2016). Generation and Analysis of an Improved Foxg1-IRES-Cre Driver Mouse Line. Dev. Biol. 412, 139–147. 10.1016/j.ydbio.2016.02.011 PubMed DOI PMC
Khan S., Chang R. (2013). Anatomy of the Vestibular System: A Review. Nre 32, 437–443. 10.3233/nre-130866 PubMed DOI
Kim W. Y., Fritzsch B., Serls A., Bakel L. A., Huang E. J., Reichardt L. F., et al. (2001). NeuroD-null Mice Are Deaf Due to a Severe Loss of the Inner Ear Sensory Neurons During Development. Development 128, 417–426. 10.1242/dev.128.3.417 PubMed DOI PMC
Krüger M., Schmid T., Krüger S., Bober E., Braun T. (2006). Functional Redundancy of NSCL-1 and NeuroD during Development of the Petrosal and Vestibulocochlear Ganglia. Eur. J. Neurosci. 24, 1581–1590. 10.1111/j.1460-9568.2006.05051.x PubMed DOI
Liberman M. C. (1991). The Olivocochlear Efferent Bundle and Susceptibility of the Inner Ear to Acoustic Injury. J. Neurophysiol. 65, 123–132. 10.1152/jn.1991.65.1.123 PubMed DOI
Liu M., Pereira F. A., Price S. D., Chu M.-j., Shope C., Himes D., et al. (2000). Essential Role of BETA2/NeuroD1 in Development of the Vestibular and Auditory Systems. Genes Dev. 14, 2839–2854. 10.1101/gad.840500 PubMed DOI PMC
Liu M., Pleasure S. J., Collins A. E., Noebels J. L., Naya F. J., Tsai M.-J., et al. (2000). Loss of BETA2/NeuroD Leads to Malformation of the Dentate Gyrus and Epilepsy. Proc. Natl. Acad. Sci. 97, 865–870. 10.1073/pnas.97.2.865 PubMed DOI PMC
Ma L., Harada T., Harada C., Romero M., Hebert J. M., McConnell S. K., et al. (2002). Neurotrophin-3 Is Required for Appropriate Establishment of Thalamocortical Connections. Neuron 36, 623–634. 10.1016/s0896-6273(02)01021-8 PubMed DOI
Ma Q., Anderson D. J., Fritzsch B. (2000). Neurogenin 1 Null Mutant Ears Develop Fewer, Morphologically Normal Hair Cells in Smaller Sensory Epithelia Devoid of Innervation. Jaro 1, 129–143. 10.1007/s101620010017 PubMed DOI PMC
Ma Q., Chen Z., Barrantes I. d. B., Luis de la Pompa J., Anderson D. J. (1998). neurogenin1 Is Essential for the Determination of Neuronal Precursors for Proximal Cranial Sensory Ganglia. Neuron 20, 469–482. 10.1016/s0896-6273(00)80988-5 PubMed DOI
Macova I., Pysanenko K., Chumak T., Dvorakova M., Bohuslavova R., Syka J., et al. (2019). Neurod1 Is Essential for the Primary Tonotopic Organization and Related Auditory Information Processing in the Midbrain. J. Neurosci. 39, 984–1004. 10.1523/jneurosci.2557-18.2018 PubMed DOI PMC
Matei V., Pauley S., Kaing S., Rowitch D., Beisel K. W., Morris K., et al. (2005). Smaller Inner Ear Sensory Epithelia in Neurog1 Null Mice Are Related to Earlier Hair Cell Cycle Exit. Dev. Dyn. 234, 633–650. 10.1002/dvdy.20551 PubMed DOI PMC
Matsuda T., Irie T., Katsurabayashi S., Hayashi Y., Nagai T., Hamazaki N., et al. (2019). Pioneer Factor NeuroD1 Rearranges Transcriptional and Epigenetic Profiles to Execute Microglia-Neuron Conversion. Neuron 101, 472–485. 10.1016/j.neuron.2018.12.010 PubMed DOI
Meas S. J., Zhang C.-L., Dabdoub A. (2018). Reprogramming Glia into Neurons in the Peripheral Auditory System as a Solution for Sensorineural Hearing Loss: Lessons from the Central Nervous System. Front. Mol. Neurosci. 11, 77. 10.3389/fnmol.2018.00077 PubMed DOI PMC
Miyata T., Maeda T., Lee J. E. (1999). NeuroD Is Required for Differentiation of the Granule Cells in the Cerebellum and hippocampus. Genes Dev. 13, 1647–1652. 10.1101/gad.13.13.1647 PubMed DOI PMC
Mostafapour S. P., Cochran S. L., Del Puerto N. M., Rubel E. W. (2000). Patterns of Cell Death in Mouse Anteroventral Cochlear Nucleus Neurons after Unilateral Cochlea Removal. J. Comp. Neurol. 426, 561–571. 10.1002/1096-9861(20001030)426::4<561aid-cne5>3.0.co;2-g PubMed DOI
Packard A., Giel-Moloney M., Leiter A., Schwob J. E. (2011). Progenitor Cell Capacity of NeuroD1-Expressing Globose Basal Cells in the Mouse Olfactory Epithelium. J. Comp. Neurol. 519, 3580–3596. 10.1002/cne.22726 PubMed DOI PMC
Panaliappan T. K., Wittmann W., Jidigam V. K., Mercurio S., Bertolini J. A., Sghari S., et al. (2018). Sox2 Is Required for Olfactory Pit Formation and Olfactory Neurogenesis through BMP Restriction and Hes5 Upregulation. Development 145, dev153791. 10.1242/dev.153791 PubMed DOI PMC
Pang Z. P., Yang N., Vierbuchen T., Ostermeier A., Fuentes D. R., Yang T. Q., et al. (2011). Induction of Human Neuronal Cells by Defined Transcription Factors. Nature 476, 220–223. 10.1038/nature10202 PubMed DOI PMC
Pavlinkova G. (2020). Molecular Aspects of the Development and Function of Auditory Neurons. Int. J. Mol. Sci. 22, 131. 10.3390/ijms22010131 PubMed DOI PMC
Pennesi M. E., Cho J.-H., Yang Z., Wu S. H., Zhang J., Wu S. M., et al. (2003). BETA2/NeuroD1 Null Mice: A New Model for Transcription Factor-dependent Photoreceptor Degeneration. J. Neurosci. 23, 453–461. 10.1523/jneurosci.23-02-00453.2003 PubMed DOI PMC
Romer A. I., Singer R. A., Sui L., Egli D., Sussel L. (2019). Murine Perinatal β-Cell Proliferation and the Differentiation of Human Stem Cell-Derived Insulin-Expressing Cells Require NEUROD1. Diabetes 68, 2259–2271. 10.2337/db19-0117 PubMed DOI PMC
Rubel E. W., Fritzsch B. (2002). Auditory System Development: Primary Auditory Neurons and Their Targets. Annu. Rev. Neurosci. 25, 51–101. 10.1146/annurev.neuro.25.112701.142849 PubMed DOI
Schlosser G., Northcutt R. G. (2000). Development of Neurogenic Placodes inXenopus Laevis. J. Comp. Neurol. 418, 121–146. 10.1002/(sici)1096-9861(20000306)418::2<121aid-cne1>3.0.co;2-m PubMed DOI
Schmidt H., Fritzsch B. (2019). Npr2 Null Mutants Show Initial Overshooting Followed by Reduction of Spiral Ganglion Axon Projections Combined with Near-normal Cochleotopic Projection. Cel Tissue Res 378, 15–32. 10.1007/s00441-019-03050-6 PubMed DOI PMC
Schwarzer S., Asokan N., Bludau O., Chae J., Kuscha V., Kaslin J., et al. (2020). Correction: Neurogenesis in the Inner Ear: the Zebrafish Statoacoustic Ganglion Provides New Neurons from a Neurod/Nestin-Positive Progenitor Pool Well into Adulthood. Development 147, 7. 10.1242/dev.191775 PubMed DOI
Shen W., Ba R., Su Y., Ni Y., Chen D., Xie W., et al. (2018). Foxg1 Regulates the Postnatal Development of Cortical Interneurons. Cereb. Cortex 29(4):1547. 10.1093/cercor/bhy051 PubMed DOI PMC
Wu D. K., Kelley M. W. (2012). Molecular Mechanisms of Inner Ear Development. Cold Spring Harbor Perspect. Biol. 4, a008409. 10.1101/cshperspect.a008409 PubMed DOI PMC
Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain
NEUROD1 reinforces endocrine cell fate acquisition in pancreatic development
ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization