Molecular Aspects of the Development and Function of Auditory Neurons
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
20-06927S
The Czech Science Foundation
86652036
the Czech Academy of Sciences RVO
PubMed
33374462
PubMed Central
PMC7796308
DOI
10.3390/ijms22010131
PII: ijms22010131
Knihovny.cz E-zdroje
- Klíčová slova
- auditory pathways, cochlea, genetic mutations, single-cell RNAseq, transcription factor,
- MeSH
- ganglion spirale embryologie fyziologie MeSH
- indukované pluripotentní kmenové buňky cytologie MeSH
- kochlea embryologie fyziologie MeSH
- lidé MeSH
- mozkový kmen MeSH
- mutace MeSH
- myši MeSH
- neurogeneze MeSH
- neurony fyziologie MeSH
- nucleus cochlearis embryologie fyziologie MeSH
- percepční nedoslýchavost patofyziologie MeSH
- regenerativní lékařství metody MeSH
- sekvence nukleotidů MeSH
- sluchové kmenové evokované potenciály MeSH
- vláskové buňky fyziologie MeSH
- vnitřní ucho embryologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This review provides an up-to-date source of information on the primary auditory neurons or spiral ganglion neurons in the cochlea. These neurons transmit auditory information in the form of electric signals from sensory hair cells to the first auditory nuclei of the brain stem, the cochlear nuclei. Congenital and acquired neurosensory hearing loss affects millions of people worldwide. An increasing body of evidence suggest that the primary auditory neurons degenerate due to noise exposure and aging more readily than sensory cells, and thus, auditory neurons are a primary target for regenerative therapy. A better understanding of the development and function of these neurons is the ultimate goal for long-term maintenance, regeneration, and stem cell replacement therapy. In this review, we provide an overview of the key molecular factors responsible for the function and neurogenesis of the primary auditory neurons, as well as a brief introduction to stem cell research focused on the replacement and generation of auditory neurons.
Zobrazit více v PubMed
Shi F., Edge A.S. Prospects for replacement of auditory neurons by stem cells. Hear. Res. 2013;297:106–112. doi: 10.1016/j.heares.2013.01.017. PubMed DOI PMC
Elgoyhen A.B., Wedemeyer C., Guilmi M.N.D. Efferent Innervation to the Cochlea. Oxford University Press; Oxford, UK: 2019.
Elgoyhen A.B., Vetter D.E., Katz E., Rothlin C.V., Heinemann S.F., Boulter J. alpha10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc. Natl. Acad. Sci. USA. 2001;98:3501–3506. doi: 10.1073/pnas.051622798. PubMed DOI PMC
Lustig L.R., Peng H., Hiel H., Yamamoto T., Fuchs P.A. Molecular cloning and mapping of the human nicotinic acetylcholine receptor alpha10 (CHRNA10) Genomics. 2001;73:272–283. doi: 10.1006/geno.2000.6503. PubMed DOI
Maison S.F., Liberman M.C. Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J. Neurosci. 2000;20:4701–4707. doi: 10.1523/JNEUROSCI.20-12-04701.2000. PubMed DOI PMC
Macova I., Pysanenko K., Chumak T., Dvorakova M., Bohuslavova R., Syka J., Fritzsch B., Pavlinkova G. Neurod1 Is Essential for the Primary Tonotopic Organization and Related Auditory Information Processing in the Midbrain. J. Neurosci. 2019;39:984–1004. doi: 10.1523/JNEUROSCI.2557-18.2018. PubMed DOI PMC
Perkins R.E., Morest D.K. A study of cochlear innervation patterns in cats and rats with the Golgi method and Nomarkski Optics. J. Comp. Neurol. 1975;163:129–158. doi: 10.1002/cne.901630202. PubMed DOI
Ryugo D.K. The Auditory Nerve: Peripheral Innervatio Cell Body Morphology, and Central Projections. Springer; New York, NY, USA: 1992.
Fechner F.P., Nadol J.J., Burgess B.J., Brown M.C. Innervation of supporting cells in the apical turns of the guinea pig cochlea is from type II afferent fibers. J. Comp. Neurol. 2001;429:289–298. doi: 10.1002/1096-9861(20000108)429:2<289::AID-CNE9>3.0.CO;2-Z. PubMed DOI
Reid M.A., Flores-Otero J., Davis R.L. Firing patterns of type II spiral ganglion neurons in vitro. J. Neurosci. 2004;24:733–742. doi: 10.1523/JNEUROSCI.3923-03.2004. PubMed DOI PMC
Flores E.N., Duggan A., Madathany T., Hogan A.K., Marquez F.G., Kumar G., Seal R.P., Edwards R.H., Liberman M.C., Garcia-Anoveros J. A non-canonical pathway from cochlea to brain signals tissue-damaging noise. Curr. Biol. 2015;25:606–612. doi: 10.1016/j.cub.2015.01.009. PubMed DOI PMC
Liu C., Glowatzki E., Fuchs P.A. Unmyelinated type II afferent neurons report cochlear damage. Proc. Natl. Acad. Sci. USA. 2015;112:14723–14727. doi: 10.1073/pnas.1515228112. PubMed DOI PMC
Shrestha B.R., Chia C., Wu L., Kujawa S.G., Liberman M.C., Goodrich L.V. Sensory Neuron Diversity in the Inner Ear Is Shaped by Activity. Cell. 2018;174:1229–1246.e17. doi: 10.1016/j.cell.2018.07.007. PubMed DOI PMC
Sun S., Babola T., Pregernig G., So K.S., Nguyen M., Su S.M., Palermo A.T., Bergles D.E., Burns J.C., Muller U. Hair Cell Mechanotransduction Regulates Spontaneous Activity and Spiral Ganglion Subtype Specification in the Auditory System. Cell. 2018;174:1247–1263.e15. doi: 10.1016/j.cell.2018.07.008. PubMed DOI PMC
Petitpre C., Wu H., Sharma A., Tokarska A., Fontanet P., Wang Y., Helmbacher F., Yackle K., Silberberg G., Hadjab S., et al. Neuronal heterogeneity and stereotyped connectivity in the auditory afferent system. Nat. Commun. 2018;9:3691. doi: 10.1038/s41467-018-06033-3. PubMed DOI PMC
Liberman L.D., Wang H., Liberman M.C. Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. J. Neurosci. 2011;31:801–808. doi: 10.1523/JNEUROSCI.3389-10.2011. PubMed DOI PMC
Wu J.S., Young E.D., Glowatzki E. Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations. J. Neurosci. 2016;36:10584–10597. doi: 10.1523/JNEUROSCI.1187-16.2016. PubMed DOI PMC
Liberman M.C. Single-neuron labeling in the cat auditory nerve. Science. 1982;216:1239–1241. doi: 10.1126/science.7079757. PubMed DOI
Rubel E.W., Fritzsch B. Auditory system development: Primary auditory neurons and their targets. Annu. Rev. Neurosci. 2002;25:51–101. doi: 10.1146/annurev.neuro.25.112701.142849. PubMed DOI
Muniak M., Connelly C.J., Suthakar K., Milinkeviciute G., Ayeni F., Ryugo D.K. The Primary Auditory Neurons of the Mammalian Cochlea. Springer; New York, NY, USA: 2016. Central Projections of Spiral Ganglion Neurons; pp. 157–190.
Fariñas I., Jones K.R., Tessarollo L., Vigers A.J., Huang E., Kirstein M., De Caprona D.C., Coppola V., Backus C., Reichardt L.F. Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J. Neurosci. 2001;21:6170–6180. doi: 10.1523/JNEUROSCI.21-16-06170.2001. PubMed DOI PMC
Yang T., Kersigo J., Jahan I., Pan N., Fritzsch B. The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hear. Res. 2011;278:21–33. doi: 10.1016/j.heares.2011.03.002. PubMed DOI PMC
Schmiedt R.A. Spontaneous rates, thresholds and tuning of auditory-nerve fibers in the gerbil: Comparisons to cat data. Hear. Res. 1989;42:23–35. doi: 10.1016/0378-5955(89)90115-9. PubMed DOI
Kandler K., Clause A., Noh J. Tonotopic reorganization of developing auditory brainstem circuits. Nat. Neurosci. 2009;12:711–717. doi: 10.1038/nn.2332. PubMed DOI PMC
Muniak M.A., Rivas A., Montey K.L., May B.J., Francis H.W., Ryugo D.K. 3D model of frequency representation in the cochlear nucleus of the CBA/J mouse. J. Comp. Neurol. 2013;521:1510–1532. doi: 10.1002/cne.23238. PubMed DOI PMC
Vyas P., Wu J.S., Jimenez A., Glowatzki E., Fuchs P.A. Characterization of transgenic mouse lines for labeling type I and type II afferent neurons in the cochlea. Sci. Rep. 2019;9:5549. doi: 10.1038/s41598-019-41770-5. PubMed DOI PMC
Zhao B., Wu Z., Grillet N., Yan L., Xiong W., Harkins-Perry S., Muller U. TMIE is an essential component of the mechanotransduction machinery of cochlear hair cells. Neuron. 2014;84:954–967. doi: 10.1016/j.neuron.2014.10.041. PubMed DOI PMC
Alagramam K.N., Goodyear R.J., Geng R., Furness D.N., van Aken A.F., Marcotti W., Kros C.J., Richardson G.P. Mutations in protocadherin 15 and cadherin 23 affect tip links and mechanotransduction in mammalian sensory hair cells. PLoS ONE. 2011;6:e19183. doi: 10.1371/journal.pone.0019183. PubMed DOI PMC
Groves A.K., Fekete D.M. Shaping sound in space: The regulation of inner ear patterning. Development. 2012;139:245–257. doi: 10.1242/dev.067074. PubMed DOI PMC
Barald K.F., Kelley M.W. From placode to polarization: New tunes in inner ear development. Development. 2004;131:4119–4130. doi: 10.1242/dev.01339. PubMed DOI
Ma Q., Anderson D.J., Fritzsch B. Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J. Assoc. Res. Otolaryngol. 2000;1:129–143. doi: 10.1007/s101620010017. PubMed DOI PMC
Liu M., Pereira F.A., Price S.D., Chu M.-j., Shope C., Himes D., Eatock R.A., Brownell W.E., Lysakowski A., Tsai M.-J. Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev. 2000;14:2839–2854. doi: 10.1101/gad.840500. PubMed DOI PMC
Jahan I., Pan N., Kersigo J., Fritzsch B. Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS ONE. 2010;5:e11661. doi: 10.1371/journal.pone.0011661. PubMed DOI PMC
Fritzsch B., Straka H. Evolution of vertebrate mechanosensory hair cells and inner ears: Toward identifying stimuli that select mutation driven altered morphologies. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2014;200:5–18. doi: 10.1007/s00359-013-0865-z. PubMed DOI PMC
Manley G.A. Comparative Auditory Neuroscience: Understanding the Evolution and Function of Ears. J. Assoc. Res. Otolaryngol. 2017;18:1–24. doi: 10.1007/s10162-016-0579-3. PubMed DOI PMC
Appler J.M., Goodrich L.V. Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly. Prog. Neurobiol. 2011;93:488–508. doi: 10.1016/j.pneurobio.2011.01.004. PubMed DOI PMC
Matei V., Pauley S., Kaing S., Rowitch D., Beisel K.W., Morris K., Feng F., Jones K., Lee J., Fritzsch B. Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Dev. Dyn. 2005;234:633–650. doi: 10.1002/dvdy.20551. PubMed DOI PMC
Fritzsch B., Pan N., Jahan I., Elliott K.L. Inner ear development: Building a spiral ganglion and an organ of Corti out of unspecified ectoderm. Cell Tissue Rese. 2015;361:7–24. doi: 10.1007/s00441-014-2031-5. PubMed DOI PMC
Dvorakova M., Macova I., Bohuslavova R., Anderova M., Fritzsch B., Pavlinkova G. Early ear neuronal development, but not olfactory or lens development, can proceed without SOX2. Dev. Biol. 2020;457:43–56. doi: 10.1016/j.ydbio.2019.09.003. PubMed DOI PMC
Appler J.M., Lu C.C., Druckenbrod N.R., Yu W.M., Koundakjian E.J., Goodrich L.V. Gata3 is a critical regulator of cochlear wiring. J. Neurosci. 2013;33:3679–3691. doi: 10.1523/JNEUROSCI.4703-12.2013. PubMed DOI PMC
Dvorakova M., Jahan I., Macova I., Chumak T., Bohuslavova R., Syka J., Fritzsch B., Pavlinkova G. Incomplete and delayed Sox2 deletion defines residual ear neurosensory development and maintenance. Sci. Rep. 2016;6:38253. doi: 10.1038/srep38253. PubMed DOI PMC
Kempfle J.S., Turban J.L., Edge A.S. Sox2 in the differentiation of cochlear progenitor cells. Sci. Rep. 2016;6:23293. doi: 10.1038/srep23293. PubMed DOI PMC
Kiernan A.E., Pelling A.L., Leung K.K., Tang A.S., Bell D.M., Tease C., Lovell-Badge R., Steel K.P., Cheah K.S. Sox2 is required for sensory organ development in the mammalian inner ear. Nature. 2005;434:1031–1035. doi: 10.1038/nature03487. PubMed DOI
Dabdoub A., Puligilla C., Jones J.M., Fritzsch B., Cheah K.S., Pevny L.H., Kelley M.W. Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc. Natl. Acad. Sci. USA. 2008;105:18396–18401. doi: 10.1073/pnas.0808175105. PubMed DOI PMC
Nishimura K., Noda T., Dabdoub A. Dynamic expression of Sox2, Gata3, and Prox1 during primary auditory neuron development in the mammalian cochlea. PLoS ONE. 2017;12:e0170568. doi: 10.1371/journal.pone.0170568. PubMed DOI PMC
Puligilla C., Dabdoub A., Brenowitz S.D., Kelley M.W. Sox2 induces neuronal formation in the developing mammalian cochlea. J. Neurosci. 2010;30:714–722. doi: 10.1523/JNEUROSCI.3852-09.2010. PubMed DOI PMC
Steevens A.R., Sookiasian D.L., Glatzer J.C., Kiernan A.E. SOX2 is required for inner ear neurogenesis. Sci. Rep. 2017;7:4086. doi: 10.1038/s41598-017-04315-2. PubMed DOI PMC
Steevens A.R., Glatzer J.C., Kellogg C.C., Low W.C., Santi P.A., Kiernan A.E. SOX2 is required for inner ear growth and cochlear nonsensory formation before sensory development. Development. 2019;146:dev170522. doi: 10.1242/dev.170522. PubMed DOI PMC
Ahmed M., Wong E.Y., Sun J., Xu J., Wang F., Xu P.X. Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Dev. Cell. 2012;22:377–390. doi: 10.1016/j.devcel.2011.12.006. PubMed DOI PMC
Ahmed M., Xu J., Xu P.X. EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear. Development. 2012;139:1965–1977. doi: 10.1242/dev.071670. PubMed DOI PMC
Kwan K.Y., Shen J., Corey D.P. C-MYC transcriptionally amplifies SOX2 target genes to regulate self-renewal in multipotent otic progenitor cells. Stem Cell Rep. 2015;4:47–60. doi: 10.1016/j.stemcr.2014.11.001. PubMed DOI PMC
Filova I., Dvorakova M., Bohuslavova R., Pavlinek A., Elliott K.L., Vochyanova S., Fritzsch B., Pavlinkova G. Combined Atoh1 and Neurod1 Deletion Reveals Autonomous Growth of Auditory Nerve Fibers. Mol. Neurobiol. 2020;57:5307–5323. doi: 10.1007/s12035-020-02092-0. PubMed DOI PMC
Ma Q., Chen Z., del Barco Barrantes I., de la Pompa J.L., Anderson D.J. neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron. 1998;20:469–482. doi: 10.1016/S0896-6273(00)80988-5. PubMed DOI
Raft S., Koundakjian E.J., Quinones H., Jayasena C.S., Goodrich L.V., Johnson J.E., Segil N., Groves A.K. Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development. 2007;134:4405–4415. doi: 10.1242/dev.009118. PubMed DOI
Kim W.-Y., Fritzsch B., Serls A., Bakel L.A., Huang E.J., Reichardt L.F., Barth D.S., Lee J.E. NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development. 2001;128:417–426. PubMed PMC
Bhati M., Lee C., Nancarrow A.L., Lee M., Craig V.J., Bach I., Guss J.M., Mackay J.P., Matthews J.M. Implementing the LIM code: The structural basis for cell type-specific assembly of LIM-homeodomain complexes. EMBO J. 2008;27:2018–2029. doi: 10.1038/emboj.2008.123. PubMed DOI PMC
Sun Y., Dykes I.M., Liang X., Eng S.R., Evans S.M., Turner E.E. A central role for Islet1 in sensory neuron development linking sensory and spinal gene regulatory programs. Nat. Neurosci. 2008;11:1283–1293. doi: 10.1038/nn.2209. PubMed DOI PMC
Bohuslavova R., Cerychova R., Papousek F., Olejnickova V., Bartos M., Gorlach A., Kolar F., Sedmera D., Semenza G.L., Pavlinkova G. HIF-1alpha is required for development of the sympathetic nervous system. Proc. Natl. Acad. Sci. USA. 2019;116:13414–13423. doi: 10.1073/pnas.1903510116. PubMed DOI PMC
Ahlgren U., Pfaff S.L., Jessell T.M., Edlund T., Edlund H. Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature. 1997;385:257–260. doi: 10.1038/385257a0. PubMed DOI
Cai C.L., Liang X., Shi Y., Chu P.H., Pfaff S.L., Chen J., Evans S. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell. 2003;5:877–889. doi: 10.1016/S1534-5807(03)00363-0. PubMed DOI PMC
Radde-Gallwitz K., Pan L., Gan L., Lin X., Segil N., Chen P. Expression of Islet1 marks the sensory and neuronal lineages in the mammalian inner ear. J. Comp. Neurol. 2004;477:412–421. doi: 10.1002/cne.20257. PubMed DOI PMC
Chumak T., Bohuslavova R., Macova I., Dodd N., Buckiova D., Fritzsch B., Syka J., Pavlinkova G. Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice. Mol. Neurobiol. 2016;53:2368–2383. doi: 10.1007/s12035-015-9215-1. PubMed DOI
Bohuslavova R., Dodd N., Macova I., Chumak T., Horak M., Syka J., Fritzsch B., Pavlinkova G. Pax2-Islet1 Transgenic Mice Are Hyperactive and Have Altered Cerebellar Foliation. Mol. Neurobiol. 2017;54:1352–1368. doi: 10.1007/s12035-016-9716-6. PubMed DOI PMC
Huang M., Kantardzhieva A., Scheffer D., Liberman M.C., Chen Z.Y. Hair cell overexpression of Islet1 reduces age-related and noise-induced hearing loss. J. Neurosci. 2013;33:15086–15094. doi: 10.1523/JNEUROSCI.1489-13.2013. PubMed DOI PMC
Huang E.J., Liu W., Fritzsch B., Bianchi L.M., Reichardt L.F., Xiang M. Brn3a is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons. Development. 2001;128:2421–2432. PubMed PMC
Sherrill H.E., Jean P., Driver E.C., Sanders T.R., Fitzgerald T.S., Moser T., Kelley M.W. Pou4f1 Defines a Subgroup of Type I Spiral Ganglion Neurons and Is Necessary for Normal Inner Hair Cell Presynaptic Ca(2+) Signaling. J. Neurosci. 2019;39:5284–5298. doi: 10.1523/JNEUROSCI.2728-18.2019. PubMed DOI PMC
Fukui H., Runker A., Fabel K., Buchholz F., Kempermann G. Transcription factor Runx1 is pro-neurogenic in adult hippocampal precursor cells. PLoS ONE. 2018;13:e0190789. doi: 10.1371/journal.pone.0190789. PubMed DOI PMC
Kramer I., Sigrist M., de Nooij J.C., Taniuchi I., Jessell T.M., Arber S. A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron. 2006;49:379–393. doi: 10.1016/j.neuron.2006.01.008. PubMed DOI
Duncan J.S., Fritzsch B. Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS ONE. 2013;8:e62046. doi: 10.1371/journal.pone.0062046. PubMed DOI PMC
Martinez-Monedero R., Yi E., Oshima K., Glowatzki E., Edge A.S. Differentiation of inner ear stem cells to functional sensory neurons. Dev. Neurobiol. 2008;68:669–684. doi: 10.1002/dneu.20616. PubMed DOI
Shi F., Kempfle J.S., Edge A.S. Wnt-responsive Lgr5-expressing stem cells are hair cell progenitors in the cochlea. J. Neurosci. 2012;32:9639–9648. doi: 10.1523/JNEUROSCI.1064-12.2012. PubMed DOI PMC
Yin J.C., Zhang L., Ma N.X., Wang Y., Lee G., Hou X.Y., Lei Z.F., Zhang F.Y., Dong F.P., Wu G.Y., et al. Chemical Conversion of Human Fetal Astrocytes into Neurons through Modulation of Multiple Signaling Pathways. Stem Cell Rep. 2019;12:488–501. doi: 10.1016/j.stemcr.2019.01.003. PubMed DOI PMC
Tang P.C., Hashino E., Nelson R.F. Progress in Modeling and Targeting Inner Ear Disorders with Pluripotent Stem Cells. Stem Cell Rep. 2020;14:996–1008. doi: 10.1016/j.stemcr.2020.04.008. PubMed DOI PMC
Coleman B., Hardman J., Coco A., Epp S., de Silva M., Crook J., Shepherd R. Fate of embryonic stem cells transplanted into the deafened mammalian cochlea. Cell Transplant. 2006;15:369–380. doi: 10.3727/000000006783981819. PubMed DOI PMC
Corrales C.E., Pan L., Li H., Liberman M.C., Heller S., Edge A.S. Engraftment and differentiation of embryonic stem cell-derived neural progenitor cells in the cochlear nerve trunk: Growth of processes into the organ of Corti. J. Neurobiol. 2006;66:1489–1500. doi: 10.1002/neu.20310. PubMed DOI PMC
Matsuoka A.J., Morrissey Z.D., Zhang C., Homma K., Belmadani A., Miller C.A., Chadly D.M., Kobayashi S., Edelbrock A.N., Tanaka-Matakatsu M., et al. Directed Differentiation of Human Embryonic Stem Cells Toward Placode-Derived Spiral Ganglion-Like Sensory Neurons. Stem Cells Transl. Med. 2017;6:923–936. doi: 10.1002/sctm.16-0032. PubMed DOI PMC
Perny M., Ting C.C., Kleinlogel S., Senn P., Roccio M. Generation of Otic Sensory Neurons from Mouse Embryonic Stem Cells in 3D Culture. Front. Cell Neurosci. 2017;11:409. doi: 10.3389/fncel.2017.00409. PubMed DOI PMC
Shi F., Corrales C.E., Liberman M.C., Edge A.S. BMP4 induction of sensory neurons from human embryonic stem cells and reinnervation of sensory epithelium. Eur. J. Neurosci. 2007;26:3016–3023. doi: 10.1111/j.1460-9568.2007.05909.x. PubMed DOI
Yilmaz A., Benvenisty N. Defining Human Pluripotency. Cell Stem Cell. 2019;25:9–22. doi: 10.1016/j.stem.2019.06.010. PubMed DOI
Roccio M., Edge A.S.B. Inner ear organoids: New tools to understand neurosensory cell development, degeneration and regeneration. Development. 2019;146:dev177188. doi: 10.1242/dev.177188. PubMed DOI PMC
ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization