Molecular Aspects of the Development and Function of Auditory Neurons

. 2020 Dec 24 ; 22 (1) : . [epub] 20201224

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33374462

Grantová podpora
20-06927S The Czech Science Foundation
86652036 the Czech Academy of Sciences RVO

This review provides an up-to-date source of information on the primary auditory neurons or spiral ganglion neurons in the cochlea. These neurons transmit auditory information in the form of electric signals from sensory hair cells to the first auditory nuclei of the brain stem, the cochlear nuclei. Congenital and acquired neurosensory hearing loss affects millions of people worldwide. An increasing body of evidence suggest that the primary auditory neurons degenerate due to noise exposure and aging more readily than sensory cells, and thus, auditory neurons are a primary target for regenerative therapy. A better understanding of the development and function of these neurons is the ultimate goal for long-term maintenance, regeneration, and stem cell replacement therapy. In this review, we provide an overview of the key molecular factors responsible for the function and neurogenesis of the primary auditory neurons, as well as a brief introduction to stem cell research focused on the replacement and generation of auditory neurons.

Zobrazit více v PubMed

Shi F., Edge A.S. Prospects for replacement of auditory neurons by stem cells. Hear. Res. 2013;297:106–112. doi: 10.1016/j.heares.2013.01.017. PubMed DOI PMC

Elgoyhen A.B., Wedemeyer C., Guilmi M.N.D. Efferent Innervation to the Cochlea. Oxford University Press; Oxford, UK: 2019.

Elgoyhen A.B., Vetter D.E., Katz E., Rothlin C.V., Heinemann S.F., Boulter J. alpha10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc. Natl. Acad. Sci. USA. 2001;98:3501–3506. doi: 10.1073/pnas.051622798. PubMed DOI PMC

Lustig L.R., Peng H., Hiel H., Yamamoto T., Fuchs P.A. Molecular cloning and mapping of the human nicotinic acetylcholine receptor alpha10 (CHRNA10) Genomics. 2001;73:272–283. doi: 10.1006/geno.2000.6503. PubMed DOI

Maison S.F., Liberman M.C. Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J. Neurosci. 2000;20:4701–4707. doi: 10.1523/JNEUROSCI.20-12-04701.2000. PubMed DOI PMC

Macova I., Pysanenko K., Chumak T., Dvorakova M., Bohuslavova R., Syka J., Fritzsch B., Pavlinkova G. Neurod1 Is Essential for the Primary Tonotopic Organization and Related Auditory Information Processing in the Midbrain. J. Neurosci. 2019;39:984–1004. doi: 10.1523/JNEUROSCI.2557-18.2018. PubMed DOI PMC

Perkins R.E., Morest D.K. A study of cochlear innervation patterns in cats and rats with the Golgi method and Nomarkski Optics. J. Comp. Neurol. 1975;163:129–158. doi: 10.1002/cne.901630202. PubMed DOI

Ryugo D.K. The Auditory Nerve: Peripheral Innervatio Cell Body Morphology, and Central Projections. Springer; New York, NY, USA: 1992.

Fechner F.P., Nadol J.J., Burgess B.J., Brown M.C. Innervation of supporting cells in the apical turns of the guinea pig cochlea is from type II afferent fibers. J. Comp. Neurol. 2001;429:289–298. doi: 10.1002/1096-9861(20000108)429:2<289::AID-CNE9>3.0.CO;2-Z. PubMed DOI

Reid M.A., Flores-Otero J., Davis R.L. Firing patterns of type II spiral ganglion neurons in vitro. J. Neurosci. 2004;24:733–742. doi: 10.1523/JNEUROSCI.3923-03.2004. PubMed DOI PMC

Flores E.N., Duggan A., Madathany T., Hogan A.K., Marquez F.G., Kumar G., Seal R.P., Edwards R.H., Liberman M.C., Garcia-Anoveros J. A non-canonical pathway from cochlea to brain signals tissue-damaging noise. Curr. Biol. 2015;25:606–612. doi: 10.1016/j.cub.2015.01.009. PubMed DOI PMC

Liu C., Glowatzki E., Fuchs P.A. Unmyelinated type II afferent neurons report cochlear damage. Proc. Natl. Acad. Sci. USA. 2015;112:14723–14727. doi: 10.1073/pnas.1515228112. PubMed DOI PMC

Shrestha B.R., Chia C., Wu L., Kujawa S.G., Liberman M.C., Goodrich L.V. Sensory Neuron Diversity in the Inner Ear Is Shaped by Activity. Cell. 2018;174:1229–1246.e17. doi: 10.1016/j.cell.2018.07.007. PubMed DOI PMC

Sun S., Babola T., Pregernig G., So K.S., Nguyen M., Su S.M., Palermo A.T., Bergles D.E., Burns J.C., Muller U. Hair Cell Mechanotransduction Regulates Spontaneous Activity and Spiral Ganglion Subtype Specification in the Auditory System. Cell. 2018;174:1247–1263.e15. doi: 10.1016/j.cell.2018.07.008. PubMed DOI PMC

Petitpre C., Wu H., Sharma A., Tokarska A., Fontanet P., Wang Y., Helmbacher F., Yackle K., Silberberg G., Hadjab S., et al. Neuronal heterogeneity and stereotyped connectivity in the auditory afferent system. Nat. Commun. 2018;9:3691. doi: 10.1038/s41467-018-06033-3. PubMed DOI PMC

Liberman L.D., Wang H., Liberman M.C. Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. J. Neurosci. 2011;31:801–808. doi: 10.1523/JNEUROSCI.3389-10.2011. PubMed DOI PMC

Wu J.S., Young E.D., Glowatzki E. Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations. J. Neurosci. 2016;36:10584–10597. doi: 10.1523/JNEUROSCI.1187-16.2016. PubMed DOI PMC

Liberman M.C. Single-neuron labeling in the cat auditory nerve. Science. 1982;216:1239–1241. doi: 10.1126/science.7079757. PubMed DOI

Rubel E.W., Fritzsch B. Auditory system development: Primary auditory neurons and their targets. Annu. Rev. Neurosci. 2002;25:51–101. doi: 10.1146/annurev.neuro.25.112701.142849. PubMed DOI

Muniak M., Connelly C.J., Suthakar K., Milinkeviciute G., Ayeni F., Ryugo D.K. The Primary Auditory Neurons of the Mammalian Cochlea. Springer; New York, NY, USA: 2016. Central Projections of Spiral Ganglion Neurons; pp. 157–190.

Fariñas I., Jones K.R., Tessarollo L., Vigers A.J., Huang E., Kirstein M., De Caprona D.C., Coppola V., Backus C., Reichardt L.F. Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J. Neurosci. 2001;21:6170–6180. doi: 10.1523/JNEUROSCI.21-16-06170.2001. PubMed DOI PMC

Yang T., Kersigo J., Jahan I., Pan N., Fritzsch B. The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hear. Res. 2011;278:21–33. doi: 10.1016/j.heares.2011.03.002. PubMed DOI PMC

Schmiedt R.A. Spontaneous rates, thresholds and tuning of auditory-nerve fibers in the gerbil: Comparisons to cat data. Hear. Res. 1989;42:23–35. doi: 10.1016/0378-5955(89)90115-9. PubMed DOI

Kandler K., Clause A., Noh J. Tonotopic reorganization of developing auditory brainstem circuits. Nat. Neurosci. 2009;12:711–717. doi: 10.1038/nn.2332. PubMed DOI PMC

Muniak M.A., Rivas A., Montey K.L., May B.J., Francis H.W., Ryugo D.K. 3D model of frequency representation in the cochlear nucleus of the CBA/J mouse. J. Comp. Neurol. 2013;521:1510–1532. doi: 10.1002/cne.23238. PubMed DOI PMC

Vyas P., Wu J.S., Jimenez A., Glowatzki E., Fuchs P.A. Characterization of transgenic mouse lines for labeling type I and type II afferent neurons in the cochlea. Sci. Rep. 2019;9:5549. doi: 10.1038/s41598-019-41770-5. PubMed DOI PMC

Zhao B., Wu Z., Grillet N., Yan L., Xiong W., Harkins-Perry S., Muller U. TMIE is an essential component of the mechanotransduction machinery of cochlear hair cells. Neuron. 2014;84:954–967. doi: 10.1016/j.neuron.2014.10.041. PubMed DOI PMC

Alagramam K.N., Goodyear R.J., Geng R., Furness D.N., van Aken A.F., Marcotti W., Kros C.J., Richardson G.P. Mutations in protocadherin 15 and cadherin 23 affect tip links and mechanotransduction in mammalian sensory hair cells. PLoS ONE. 2011;6:e19183. doi: 10.1371/journal.pone.0019183. PubMed DOI PMC

Groves A.K., Fekete D.M. Shaping sound in space: The regulation of inner ear patterning. Development. 2012;139:245–257. doi: 10.1242/dev.067074. PubMed DOI PMC

Barald K.F., Kelley M.W. From placode to polarization: New tunes in inner ear development. Development. 2004;131:4119–4130. doi: 10.1242/dev.01339. PubMed DOI

Ma Q., Anderson D.J., Fritzsch B. Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J. Assoc. Res. Otolaryngol. 2000;1:129–143. doi: 10.1007/s101620010017. PubMed DOI PMC

Liu M., Pereira F.A., Price S.D., Chu M.-j., Shope C., Himes D., Eatock R.A., Brownell W.E., Lysakowski A., Tsai M.-J. Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev. 2000;14:2839–2854. doi: 10.1101/gad.840500. PubMed DOI PMC

Jahan I., Pan N., Kersigo J., Fritzsch B. Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS ONE. 2010;5:e11661. doi: 10.1371/journal.pone.0011661. PubMed DOI PMC

Fritzsch B., Straka H. Evolution of vertebrate mechanosensory hair cells and inner ears: Toward identifying stimuli that select mutation driven altered morphologies. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2014;200:5–18. doi: 10.1007/s00359-013-0865-z. PubMed DOI PMC

Manley G.A. Comparative Auditory Neuroscience: Understanding the Evolution and Function of Ears. J. Assoc. Res. Otolaryngol. 2017;18:1–24. doi: 10.1007/s10162-016-0579-3. PubMed DOI PMC

Appler J.M., Goodrich L.V. Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly. Prog. Neurobiol. 2011;93:488–508. doi: 10.1016/j.pneurobio.2011.01.004. PubMed DOI PMC

Matei V., Pauley S., Kaing S., Rowitch D., Beisel K.W., Morris K., Feng F., Jones K., Lee J., Fritzsch B. Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Dev. Dyn. 2005;234:633–650. doi: 10.1002/dvdy.20551. PubMed DOI PMC

Fritzsch B., Pan N., Jahan I., Elliott K.L. Inner ear development: Building a spiral ganglion and an organ of Corti out of unspecified ectoderm. Cell Tissue Rese. 2015;361:7–24. doi: 10.1007/s00441-014-2031-5. PubMed DOI PMC

Dvorakova M., Macova I., Bohuslavova R., Anderova M., Fritzsch B., Pavlinkova G. Early ear neuronal development, but not olfactory or lens development, can proceed without SOX2. Dev. Biol. 2020;457:43–56. doi: 10.1016/j.ydbio.2019.09.003. PubMed DOI PMC

Appler J.M., Lu C.C., Druckenbrod N.R., Yu W.M., Koundakjian E.J., Goodrich L.V. Gata3 is a critical regulator of cochlear wiring. J. Neurosci. 2013;33:3679–3691. doi: 10.1523/JNEUROSCI.4703-12.2013. PubMed DOI PMC

Dvorakova M., Jahan I., Macova I., Chumak T., Bohuslavova R., Syka J., Fritzsch B., Pavlinkova G. Incomplete and delayed Sox2 deletion defines residual ear neurosensory development and maintenance. Sci. Rep. 2016;6:38253. doi: 10.1038/srep38253. PubMed DOI PMC

Kempfle J.S., Turban J.L., Edge A.S. Sox2 in the differentiation of cochlear progenitor cells. Sci. Rep. 2016;6:23293. doi: 10.1038/srep23293. PubMed DOI PMC

Kiernan A.E., Pelling A.L., Leung K.K., Tang A.S., Bell D.M., Tease C., Lovell-Badge R., Steel K.P., Cheah K.S. Sox2 is required for sensory organ development in the mammalian inner ear. Nature. 2005;434:1031–1035. doi: 10.1038/nature03487. PubMed DOI

Dabdoub A., Puligilla C., Jones J.M., Fritzsch B., Cheah K.S., Pevny L.H., Kelley M.W. Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc. Natl. Acad. Sci. USA. 2008;105:18396–18401. doi: 10.1073/pnas.0808175105. PubMed DOI PMC

Nishimura K., Noda T., Dabdoub A. Dynamic expression of Sox2, Gata3, and Prox1 during primary auditory neuron development in the mammalian cochlea. PLoS ONE. 2017;12:e0170568. doi: 10.1371/journal.pone.0170568. PubMed DOI PMC

Puligilla C., Dabdoub A., Brenowitz S.D., Kelley M.W. Sox2 induces neuronal formation in the developing mammalian cochlea. J. Neurosci. 2010;30:714–722. doi: 10.1523/JNEUROSCI.3852-09.2010. PubMed DOI PMC

Steevens A.R., Sookiasian D.L., Glatzer J.C., Kiernan A.E. SOX2 is required for inner ear neurogenesis. Sci. Rep. 2017;7:4086. doi: 10.1038/s41598-017-04315-2. PubMed DOI PMC

Steevens A.R., Glatzer J.C., Kellogg C.C., Low W.C., Santi P.A., Kiernan A.E. SOX2 is required for inner ear growth and cochlear nonsensory formation before sensory development. Development. 2019;146:dev170522. doi: 10.1242/dev.170522. PubMed DOI PMC

Ahmed M., Wong E.Y., Sun J., Xu J., Wang F., Xu P.X. Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Dev. Cell. 2012;22:377–390. doi: 10.1016/j.devcel.2011.12.006. PubMed DOI PMC

Ahmed M., Xu J., Xu P.X. EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear. Development. 2012;139:1965–1977. doi: 10.1242/dev.071670. PubMed DOI PMC

Kwan K.Y., Shen J., Corey D.P. C-MYC transcriptionally amplifies SOX2 target genes to regulate self-renewal in multipotent otic progenitor cells. Stem Cell Rep. 2015;4:47–60. doi: 10.1016/j.stemcr.2014.11.001. PubMed DOI PMC

Filova I., Dvorakova M., Bohuslavova R., Pavlinek A., Elliott K.L., Vochyanova S., Fritzsch B., Pavlinkova G. Combined Atoh1 and Neurod1 Deletion Reveals Autonomous Growth of Auditory Nerve Fibers. Mol. Neurobiol. 2020;57:5307–5323. doi: 10.1007/s12035-020-02092-0. PubMed DOI PMC

Ma Q., Chen Z., del Barco Barrantes I., de la Pompa J.L., Anderson D.J. neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron. 1998;20:469–482. doi: 10.1016/S0896-6273(00)80988-5. PubMed DOI

Raft S., Koundakjian E.J., Quinones H., Jayasena C.S., Goodrich L.V., Johnson J.E., Segil N., Groves A.K. Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development. 2007;134:4405–4415. doi: 10.1242/dev.009118. PubMed DOI

Kim W.-Y., Fritzsch B., Serls A., Bakel L.A., Huang E.J., Reichardt L.F., Barth D.S., Lee J.E. NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development. 2001;128:417–426. PubMed PMC

Bhati M., Lee C., Nancarrow A.L., Lee M., Craig V.J., Bach I., Guss J.M., Mackay J.P., Matthews J.M. Implementing the LIM code: The structural basis for cell type-specific assembly of LIM-homeodomain complexes. EMBO J. 2008;27:2018–2029. doi: 10.1038/emboj.2008.123. PubMed DOI PMC

Sun Y., Dykes I.M., Liang X., Eng S.R., Evans S.M., Turner E.E. A central role for Islet1 in sensory neuron development linking sensory and spinal gene regulatory programs. Nat. Neurosci. 2008;11:1283–1293. doi: 10.1038/nn.2209. PubMed DOI PMC

Bohuslavova R., Cerychova R., Papousek F., Olejnickova V., Bartos M., Gorlach A., Kolar F., Sedmera D., Semenza G.L., Pavlinkova G. HIF-1alpha is required for development of the sympathetic nervous system. Proc. Natl. Acad. Sci. USA. 2019;116:13414–13423. doi: 10.1073/pnas.1903510116. PubMed DOI PMC

Ahlgren U., Pfaff S.L., Jessell T.M., Edlund T., Edlund H. Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature. 1997;385:257–260. doi: 10.1038/385257a0. PubMed DOI

Cai C.L., Liang X., Shi Y., Chu P.H., Pfaff S.L., Chen J., Evans S. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell. 2003;5:877–889. doi: 10.1016/S1534-5807(03)00363-0. PubMed DOI PMC

Radde-Gallwitz K., Pan L., Gan L., Lin X., Segil N., Chen P. Expression of Islet1 marks the sensory and neuronal lineages in the mammalian inner ear. J. Comp. Neurol. 2004;477:412–421. doi: 10.1002/cne.20257. PubMed DOI PMC

Chumak T., Bohuslavova R., Macova I., Dodd N., Buckiova D., Fritzsch B., Syka J., Pavlinkova G. Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice. Mol. Neurobiol. 2016;53:2368–2383. doi: 10.1007/s12035-015-9215-1. PubMed DOI

Bohuslavova R., Dodd N., Macova I., Chumak T., Horak M., Syka J., Fritzsch B., Pavlinkova G. Pax2-Islet1 Transgenic Mice Are Hyperactive and Have Altered Cerebellar Foliation. Mol. Neurobiol. 2017;54:1352–1368. doi: 10.1007/s12035-016-9716-6. PubMed DOI PMC

Huang M., Kantardzhieva A., Scheffer D., Liberman M.C., Chen Z.Y. Hair cell overexpression of Islet1 reduces age-related and noise-induced hearing loss. J. Neurosci. 2013;33:15086–15094. doi: 10.1523/JNEUROSCI.1489-13.2013. PubMed DOI PMC

Huang E.J., Liu W., Fritzsch B., Bianchi L.M., Reichardt L.F., Xiang M. Brn3a is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons. Development. 2001;128:2421–2432. PubMed PMC

Sherrill H.E., Jean P., Driver E.C., Sanders T.R., Fitzgerald T.S., Moser T., Kelley M.W. Pou4f1 Defines a Subgroup of Type I Spiral Ganglion Neurons and Is Necessary for Normal Inner Hair Cell Presynaptic Ca(2+) Signaling. J. Neurosci. 2019;39:5284–5298. doi: 10.1523/JNEUROSCI.2728-18.2019. PubMed DOI PMC

Fukui H., Runker A., Fabel K., Buchholz F., Kempermann G. Transcription factor Runx1 is pro-neurogenic in adult hippocampal precursor cells. PLoS ONE. 2018;13:e0190789. doi: 10.1371/journal.pone.0190789. PubMed DOI PMC

Kramer I., Sigrist M., de Nooij J.C., Taniuchi I., Jessell T.M., Arber S. A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron. 2006;49:379–393. doi: 10.1016/j.neuron.2006.01.008. PubMed DOI

Duncan J.S., Fritzsch B. Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS ONE. 2013;8:e62046. doi: 10.1371/journal.pone.0062046. PubMed DOI PMC

Martinez-Monedero R., Yi E., Oshima K., Glowatzki E., Edge A.S. Differentiation of inner ear stem cells to functional sensory neurons. Dev. Neurobiol. 2008;68:669–684. doi: 10.1002/dneu.20616. PubMed DOI

Shi F., Kempfle J.S., Edge A.S. Wnt-responsive Lgr5-expressing stem cells are hair cell progenitors in the cochlea. J. Neurosci. 2012;32:9639–9648. doi: 10.1523/JNEUROSCI.1064-12.2012. PubMed DOI PMC

Yin J.C., Zhang L., Ma N.X., Wang Y., Lee G., Hou X.Y., Lei Z.F., Zhang F.Y., Dong F.P., Wu G.Y., et al. Chemical Conversion of Human Fetal Astrocytes into Neurons through Modulation of Multiple Signaling Pathways. Stem Cell Rep. 2019;12:488–501. doi: 10.1016/j.stemcr.2019.01.003. PubMed DOI PMC

Tang P.C., Hashino E., Nelson R.F. Progress in Modeling and Targeting Inner Ear Disorders with Pluripotent Stem Cells. Stem Cell Rep. 2020;14:996–1008. doi: 10.1016/j.stemcr.2020.04.008. PubMed DOI PMC

Coleman B., Hardman J., Coco A., Epp S., de Silva M., Crook J., Shepherd R. Fate of embryonic stem cells transplanted into the deafened mammalian cochlea. Cell Transplant. 2006;15:369–380. doi: 10.3727/000000006783981819. PubMed DOI PMC

Corrales C.E., Pan L., Li H., Liberman M.C., Heller S., Edge A.S. Engraftment and differentiation of embryonic stem cell-derived neural progenitor cells in the cochlear nerve trunk: Growth of processes into the organ of Corti. J. Neurobiol. 2006;66:1489–1500. doi: 10.1002/neu.20310. PubMed DOI PMC

Matsuoka A.J., Morrissey Z.D., Zhang C., Homma K., Belmadani A., Miller C.A., Chadly D.M., Kobayashi S., Edelbrock A.N., Tanaka-Matakatsu M., et al. Directed Differentiation of Human Embryonic Stem Cells Toward Placode-Derived Spiral Ganglion-Like Sensory Neurons. Stem Cells Transl. Med. 2017;6:923–936. doi: 10.1002/sctm.16-0032. PubMed DOI PMC

Perny M., Ting C.C., Kleinlogel S., Senn P., Roccio M. Generation of Otic Sensory Neurons from Mouse Embryonic Stem Cells in 3D Culture. Front. Cell Neurosci. 2017;11:409. doi: 10.3389/fncel.2017.00409. PubMed DOI PMC

Shi F., Corrales C.E., Liberman M.C., Edge A.S. BMP4 induction of sensory neurons from human embryonic stem cells and reinnervation of sensory epithelium. Eur. J. Neurosci. 2007;26:3016–3023. doi: 10.1111/j.1460-9568.2007.05909.x. PubMed DOI

Yilmaz A., Benvenisty N. Defining Human Pluripotency. Cell Stem Cell. 2019;25:9–22. doi: 10.1016/j.stem.2019.06.010. PubMed DOI

Roccio M., Edge A.S.B. Inner ear organoids: New tools to understand neurosensory cell development, degeneration and regeneration. Development. 2019;146:dev177188. doi: 10.1242/dev.177188. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...