This review provides an up-to-date source of information on the primary auditory neurons or spiral ganglion neurons in the cochlea. These neurons transmit auditory information in the form of electric signals from sensory hair cells to the first auditory nuclei of the brain stem, the cochlear nuclei. Congenital and acquired neurosensory hearing loss affects millions of people worldwide. An increasing body of evidence suggest that the primary auditory neurons degenerate due to noise exposure and aging more readily than sensory cells, and thus, auditory neurons are a primary target for regenerative therapy. A better understanding of the development and function of these neurons is the ultimate goal for long-term maintenance, regeneration, and stem cell replacement therapy. In this review, we provide an overview of the key molecular factors responsible for the function and neurogenesis of the primary auditory neurons, as well as a brief introduction to stem cell research focused on the replacement and generation of auditory neurons.
- MeSH
- ganglion spirale embryologie fyziologie MeSH
- indukované pluripotentní kmenové buňky cytologie MeSH
- kochlea embryologie fyziologie MeSH
- lidé MeSH
- mozkový kmen MeSH
- mutace MeSH
- myši MeSH
- neurogeneze MeSH
- neurony fyziologie MeSH
- nucleus cochlearis embryologie fyziologie MeSH
- percepční nedoslýchavost patofyziologie MeSH
- regenerativní lékařství metody MeSH
- sekvence nukleotidů MeSH
- sluchové kmenové evokované potenciály MeSH
- vláskové buňky fyziologie MeSH
- vnitřní ucho embryologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
To examine whether exposure to sodium salicylate disrupts expression of vesicular glutamate transporter 3 (VGLUT3) and whether the alteration in expression corresponds to increased risk for tinnitus. Rats were treated with saline (control) or sodium salicylate (treated) Rats were examined for tinnitus by monitoring gap-pre-pulse inhibition of the acoustic startle reflex (GPIAS). Auditory brainstem response (ABR) was applied to evaluate hearing function after treatment. Rats were sacrificed after injection to obtain the cochlea, cochlear nucleus (CN), and inferior colliculus (IC) for examination of VGLUT3 expression. No significant differences in hearing thresholds between groups were identified (p>0.05). Tinnitus in sodium salicylate-treated rats was confirmed by GPIAS. VGLUT3 encoded by solute carrier family 17 members 8 (SLC17a8) expression was significantly increased in inner hair cells (IHCs) of the cochlea in treated animals, compared with controls (p<0.01). No significant differences in VGLUT3 expression between groups were found for the cochlear nucleus (CN) or IC (p>0.05). Exposure to sodium salicylate may disrupt SLC17a8 expression in IHCs, leading to alterations that correspond to tinnitus in rats. However, the CN and IC are unaffected by exposure to sodium salicylate, suggesting that enhancement of VGLUT3 expression in IHCs may contribute to the pathogenesis of tinnitus.
- MeSH
- antiflogistika nesteroidní škodlivé účinky MeSH
- colliculus inferior účinky léků metabolismus MeSH
- nucleus cochlearis účinky léků metabolismus MeSH
- potkani Wistar MeSH
- salicylan sodný škodlivé účinky MeSH
- sluchový práh účinky léků MeSH
- tinnitus chemicky indukované MeSH
- vezikulární transportní proteiny pro glutamát metabolismus MeSH
- vnitřní vláskové buňky účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Hearing depends on extracting frequency, intensity, and temporal properties from sound to generate an auditory map for acoustical signal processing. How physiology intersects with molecular specification to fine tune the developing properties of the auditory system that enable these aspects remains unclear. We made a novel conditional deletion model that eliminates the transcription factor NEUROD1 exclusively in the ear. These mice (both sexes) develop a truncated frequency range with no neuroanatomically recognizable mapping of spiral ganglion neurons onto distinct locations in the cochlea nor a cochleotopic map presenting topographically discrete projections to the cochlear nuclei. The disorganized primary cochleotopic map alters tuning properties of the inferior colliculus units, which display abnormal frequency, intensity, and temporal sound coding. At the behavioral level, animals show alterations in the acoustic startle response, consistent with altered neuroanatomical and physiological properties. We demonstrate that absence of the primary afferent topology during embryonic development leads to dysfunctional tonotopy of the auditory system. Such effects have never been investigated in other sensory systems because of the lack of comparable single gene mutation models.SIGNIFICANCE STATEMENT All sensory systems form a topographical map of neuronal projections from peripheral sensory organs to the brain. Neuronal projections in the auditory pathway are cochleotopically organized, providing a tonotopic map of sound frequencies. Primary sensory maps typically arise by molecular cues, requiring physiological refinements. Past work has demonstrated physiologic plasticity in many senses without ever molecularly undoing the specific mapping of an entire primary sensory projection. We genetically manipulated primary auditory neurons to generate a scrambled cochleotopic projection. Eliminating tonotopic representation to auditory nuclei demonstrates the inability of physiological processes to restore a tonotopic presentation of sound in the midbrain. Our data provide the first insights into the limits of physiology-mediated brainstem plasticity during the development of the auditory system.
- MeSH
- chování zvířat fyziologie MeSH
- colliculus inferior anatomie a histologie fyziologie MeSH
- ganglion spirale cytologie fyziologie MeSH
- mapování mozku MeSH
- mezencefalon embryologie fyziologie MeSH
- myši knockoutované MeSH
- myši MeSH
- nucleus cochlearis anatomie a histologie fyziologie MeSH
- sluch fyziologie MeSH
- sluchová percepce genetika fyziologie MeSH
- těhotenství MeSH
- transkripční faktory bHLH genetika fyziologie MeSH
- úleková reakce genetika fyziologie MeSH
- vestibulární aparát anatomie a histologie fyziologie MeSH
- vnímání výšky zvuku fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Tone at moderate levels presented to young rats at a stage (postnatal week-4) presumably that has passed the cortical critical period still can enlarge neurons in the auditory cortex. It remains unclear whether this delayed plastic change occurs only in the cortex, or reflects a change taking place in the auditory brainstem. Here we compared sound-exposure effects on neuronal size in the auditory cortex and the midbrain. Starting from postnatal day 22, young rats were exposed to a low-frequency tone (4 kHz at 65 dB SPL) for a period of 3 (postnatal day 22-25) or 7 (postnatal day 22-29) days before sacrifice. Neurons were analyzed morphometrically from 7 μm-thick histological sections. A marked increase in neuronal size (32%) was found at the cortex in the high-frequency region distant from the exposing tone. The increase in the midbrain was even larger (67%) and was found in both the low and high frequency regions. While cell enlargements were clear at day 29, only in the high frequency region of the cortex a slight enlargement was found at day 22, suggesting that the cortical and subcortical changes are synchronized, if not slightly preceded by the cortex. In contrast, no changes in neuronal size were found in the cochlear nucleus or the visual midbrain. Such differential effects of sound-exposure at the auditory centers across cortical and subcortical levels cannot be explained by a simple activity-driven change occurring earlier in the brainstem, and might involve function of other structures as for example the descending auditory system.
- MeSH
- akustická stimulace MeSH
- časové faktory MeSH
- kosti a kostní tkáň MeSH
- krysa rodu rattus MeSH
- mezencefalon fyziologie MeSH
- mozkový kmen fyziologie MeSH
- neurony metabolismus fyziologie MeSH
- neuroplasticita MeSH
- nucleus cochlearis metabolismus MeSH
- potkani Sprague-Dawley MeSH
- sluch MeSH
- sluchová dráha fyziologie MeSH
- sluchové korové centrum fyziologie MeSH
- zvířata MeSH
- zvuk * MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
SMI-32 antibody recognizes a non-phosphorylated epitope of neurofilament proteins, which are thought to be necessary for the maintenance of large neurons with highly myelinated processes. We investigated the distribution and quantity of SMI-32-immunoreactive(-ir) neurons in individual parts of the rat auditory system. SMI-32-ir neurons were present in all auditory structures; however, in most regions they constituted only a minority of all neurons (10-30%). In the cochlear nuclei, a higher occurrence of SMI-32-ir neurons was found in the ventral cochlear nucleus. Within the superior olivary complex, SMI-32-ir cells were particularly abundant in the medial nucleus of the trapezoid body (MNTB), the only auditory region where SMI-32-ir neurons constituted an absolute majority of all neurons. In the inferior colliculus, a region with the highest total number of neurons among the rat auditory subcortical structures, the percentage of SMI-32-ir cells was, in contrast to the MNTB, very low. In the medial geniculate body, SMI-32-ir neurons were prevalent in the ventral division. At the cortical level, SMI-32-ir neurons were found mainly in layers III, V and VI. Within the auditory cortex, it was possible to distinguish the Te1, Te2 and Te3 areas on the basis of the variable numerical density and volumes of SMI-32-ir neurons, especially when the pyramidal cells of layer V were taken into account. SMI-32-ir neurons apparently form a representative subpopulation of neurons in all parts of the rat central auditory system and may belong to both the inhibitory and excitatory systems, depending on the particular brain region.
- MeSH
- analýza rozptylu MeSH
- colliculus inferior cytologie metabolismus MeSH
- imunohistochemie MeSH
- krysa rodu rattus MeSH
- metathalamus cytologie metabolismus MeSH
- mikroskopie MeSH
- monoklonální protilátky metabolismus MeSH
- neurofilamentové proteiny metabolismus MeSH
- neurony aferentní metabolismus MeSH
- nucleus cochlearis cytologie metabolismus MeSH
- potkani Long-Evans MeSH
- přední mozek cytologie metabolismus MeSH
- sluchová dráha cytologie MeSH
- sluchové korové centrum cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- centrální nedoslýchavost chirurgie komplikace MeSH
- dospělí MeSH
- implantace protézy MeSH
- lidé MeSH
- mozkový kmen chirurgie MeSH
- neurofibromatóza 2 chirurgie komplikace MeSH
- nucleus cochlearis MeSH
- sluchové kmenové evokované potenciály MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
Acta oto-laryngologica, ISSN 0365-5237 suppl. 226, 1967
78 s. : il. ; 26 cm
Acta oto-laryngologica, ISSN 0365-5237 suppl. 194, 1964
93 s. : il., tab. ; 26 cm