Formation and disruption of tonotopy in a large-scale model of the auditory cortex
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26344164
DOI
10.1007/s10827-015-0568-2
PII: 10.1007/s10827-015-0568-2
Knihovny.cz E-zdroje
- Klíčová slova
- Auditory cortex, Large-scale model, Oscillation, STDP, Spiking neuron, Tonotopy,
- MeSH
- akční potenciály fyziologie MeSH
- akustická stimulace MeSH
- lidé MeSH
- modely neurologické * MeSH
- nervová síť fyziologie MeSH
- neurony fyziologie MeSH
- počítačová simulace * MeSH
- sluchové korové centrum cytologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
There is ample experimental evidence describing changes of tonotopic organisation in the auditory cortex due to environmental factors. In order to uncover the underlying mechanisms, we designed a large-scale computational model of the auditory cortex. The model has up to 100 000 Izhikevich's spiking neurons of 17 different types, almost 21 million synapses, which are evolved according to Spike-Timing-Dependent Plasticity (STDP) and have an architecture akin to existing observations. Validation of the model revealed alternating synchronised/desynchronised states and different modes of oscillatory activity. We provide insight into these phenomena via analysing the activity of neuronal subtypes and testing different causal interventions into the simulation. Our model is able to produce experimental predictions on a cell type basis. To study the influence of environmental factors on the tonotopy, different types of auditory stimulations during the evolution of the network were modelled and compared. We found that strong white noise resulted in completely disrupted tonotopy, which is consistent with in vivo experimental observations. Stimulation with pure tones or spontaneous activity led to a similar degree of tonotopy as in the initial state of the network. Interestingly, weak white noise led to a substantial increase in tonotopy. As the STDP was the only mechanism of plasticity in our model, our results suggest that STDP is a sufficient condition for the emergence and disruption of tonotopy under various types of stimuli. The presented large-scale model of the auditory cortex and the core simulator, SUSNOIMAC, have been made publicly available.
Faculty of Mathematics and Physics Charles University Prague Prague Czech Republic
Life Sciences Interface Doctoral Training Centre University of Oxford Oxford UK
Zobrazit více v PubMed
J Physiol. 2003 Aug 15;551(Pt 1):139-53 PubMed
Neurosci Biobehav Rev. 2011 Nov;35(10):2105-13 PubMed
Nat Rev Neurosci. 2009 Feb;10(2):113-25 PubMed
J Neurosci. 2012 Apr 18;32(16):5609-19 PubMed
J Neurosci. 2014 Oct 8;34(41):13670-83 PubMed
Brain Struct Funct. 2012 Jan;217(1):19-36 PubMed
Brain Res. 1987 Aug;431(2):281-90 PubMed
Annu Rev Neurosci. 2000;23:501-29 PubMed
Prog Brain Res. 2006;157:283-313 PubMed
Neural Comput. 2006 Feb;18(2):245-82 PubMed
Nature. 2010 Jun 17;465(7300):927-31 PubMed
J Neurosci. 2013 Dec 11;33(50):19567-78 PubMed
J Neurosci. 2014 Feb 12;34(7):2571-82 PubMed
Nature. 2009 Jun 4;459(7247):663-7 PubMed
Nat Neurosci. 2001 Nov;4(11):1123-30 PubMed
Neuron. 2009 Nov 12;64(3):404-18 PubMed
Neuroscience. 2008 Jun 12;154(1):390-6 PubMed
Nat Neurosci. 2012 Jan 29;15(3):456-62, S1-2 PubMed
J Physiol. 1999 Nov 15;521 Pt 1:169-90 PubMed
Annu Rev Neurosci. 2012;35:203-25 PubMed
Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13222-7 PubMed
Nat Rev Neurosci. 2004 Oct;5(10):793-807 PubMed
J Neurophysiol. 1995 May;73(5):2072-93 PubMed
Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2309-14 PubMed
J Neurosci. 2012 Jul 18;32(29):9969-80 PubMed
Science. 1993 Oct 29;262(5134):679-85 PubMed
Cereb Cortex. 1993 Nov-Dec;3(6):499-514 PubMed
PLoS One. 2013 Jun 13;8(6):e65432 PubMed
PLoS Comput Biol. 2009 Aug;5(8):e1000456 PubMed
Nature. 2007 Nov 15;450(7168):425-9 PubMed
J Neurophysiol. 2002 Jan;87(1):361-84 PubMed
Cereb Cortex. 2007 Oct;17(10):2443-52 PubMed
J Gen Physiol. 1972 Jun;59(6):734-66 PubMed
J Neurocytol. 2002 Mar-Jun;31(3-5):299-316 PubMed
J Neurosci. 2011 Mar 30;31(13):4935-43 PubMed
Neuroscience. 2003;117(4):1003-16 PubMed
PLoS One. 2008 Apr 16;3(4):e2004 PubMed
Nature. 1995 Jun 22;375(6533):682-4 PubMed
Cell. 2014 Feb 27;156(5):1096-111 PubMed
Exp Brain Res. 2007 Nov;183(3):377-88 PubMed
J Comp Neurol. 2000 Nov 13;427(2):302-31 PubMed
Cereb Cortex. 2015 Jul;25(7):1782-91 PubMed
PLoS Biol. 2005 Mar;3(3):e68 PubMed
Nat Neurosci. 2010 Mar;13(3):361-8 PubMed
Neuron. 2012 Feb 23;73(4):814-28 PubMed
Hippocampus. 1993 Jul;3(3):317-30 PubMed
Neuron. 2013 Jan 9;77(1):155-67 PubMed
J Neurosci. 2010 Nov 17;30(46):15566-72 PubMed
Nature. 1999 Nov 4;402(6757):72-5 PubMed
Cereb Cortex. 2000 Dec;10(12):1185-99 PubMed
Cereb Cortex. 1997 Sep;7(6):476-86 PubMed
J Neurosci. 1995 Apr;15(4):2638-55 PubMed
Nat Neurosci. 2010 Mar;13(3):353-60 PubMed
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3593-8 PubMed
J Neurosci. 2013 Aug 21;33(34):13713-23 PubMed
J Neurophysiol. 2009 Jan;101(1):323-31 PubMed
J Neurophysiol. 2003 Nov;90(5):2987-3000 PubMed
J Neurosci. 2007 Jan 3;27(1):180-9 PubMed
J Neurosci. 1996 Sep 1;16(17):5290-300 PubMed
J Comp Neurol. 2001 Aug 6;436(4):508-19 PubMed
J Neurophysiol. 2006 Mar;95(3):1630-8 PubMed
J Comput Neurosci. 2011 Apr;30(2):279-99 PubMed
J Comput Neurosci. 2012 Oct;33(2):323-39 PubMed
Neuron. 2008 Apr 10;58(1):132-43 PubMed
J Comp Physiol A. 1997 Dec;181(6):559-71 PubMed
Nat Neurosci. 2012 Jan 22;15(3):449-55, S1-2 PubMed
J Neurophysiol. 2003 Dec;90(6):3794-808 PubMed
Front Neural Circuits. 2012 Dec 21;6:109 PubMed
Front Comput Neurosci. 2011 Jul 08;5:31 PubMed
J Physiol. 1952 Aug;117(4):500-44 PubMed
J Neurophysiol. 2010 May;103(5):2611-7 PubMed
J Neurosci. 2004 Sep 29;24(39):8441-53 PubMed
Neurosci Biobehav Rev. 2011 Nov;35(10):2094-104 PubMed
J Comp Neurol. 2000 Oct 9;426(1):117-29 PubMed
Science. 1997 Jan 10;275(5297):213-5 PubMed
J Neurosci. 2005 Apr 13;25(15):3908-18 PubMed
Nat Neurosci. 2015 Feb;18(2):170-81 PubMed
Biol Cybern. 2014 Oct;108(5):655-63 PubMed
Hear Res. 2005 Aug;206(1-2):177-84 PubMed
Nature. 2011 Dec 07;480(7377):331-5 PubMed
J Comp Neurol. 2012 Jan 1;520(1):34-51 PubMed
J Comp Neurol. 2008 Apr 20;507(6):1879-900 PubMed
Neuron. 2014 Aug 20;83(4):944-59 PubMed
J Neurosci. 2010 Aug 18;30(33):11114-27 PubMed
J Physiol Paris. 2009 Jan-Mar;103(1-2):73-87 PubMed
J Neurosci. 2009 Apr 22;29(16):5163-9 PubMed
J Neurosci. 2008 Sep 10;28(37):9151-63 PubMed
J Neurosci. 2009 May 20;29(20):6406-17 PubMed
Prog Neurobiol. 1998 Aug;55(6):563-75 PubMed
Nat Neurosci. 2000 Sep;3(9):919-26 PubMed
J Neurophysiol. 2007 Mar;97(3):1911-30 PubMed
Annu Rev Neurosci. 1989;12:13-31 PubMed
J Neurosci. 2008 Oct 29;28(44):11174-85 PubMed
IEEE Trans Neural Netw. 2003;14(6):1569-72 PubMed
Curr Opin Neurobiol. 2006 Aug;16(4):371-6 PubMed
IEEE Trans Neural Netw. 2004 Sep;15(5):1063-70 PubMed
Nature. 2012 Aug 16;488(7411):343-8 PubMed
Science. 2003 Apr 18;300(5618):498-502 PubMed
J Neurosci. 2004 Dec 8;24(49):11046-56 PubMed
J Neurophysiol. 2002 Sep;88(3):1318-27 PubMed
Hear Res. 2007 Jul;229(1-2):3-13 PubMed
Hear Res. 2006 Feb;212(1-2):1-8 PubMed
Nature. 2003 Oct 23;425(6960):828-32 PubMed
Trends Neurosci. 2007 Dec;30(12):622-9 PubMed