Reprogramming of the developing heart by Hif1a-deficient sympathetic system and maternal diabetes exposure
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38505753
PubMed Central
PMC10948485
DOI
10.3389/fendo.2024.1344074
Knihovny.cz E-zdroje
- Klíčová slova
- cardiac sympathetic system, coronary arteries, maternal diabetes, mouse model, sympathetic neurons,
- MeSH
- dítě MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa metabolismus MeSH
- gestační diabetes * metabolismus MeSH
- kardiovaskulární nemoci * metabolismus MeSH
- lidé MeSH
- myokard metabolismus MeSH
- myši MeSH
- novorozenec MeSH
- srdce MeSH
- srdeční selhání * MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- myši MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- faktor 1 indukovatelný hypoxií - podjednotka alfa MeSH
- Hif1a protein, mouse MeSH Prohlížeč
INTRODUCTION: Maternal diabetes is a recognized risk factor for both short-term and long-term complications in offspring. Beyond the direct teratogenicity of maternal diabetes, the intrauterine environment can influence the offspring's cardiovascular health. Abnormalities in the cardiac sympathetic system are implicated in conditions such as sudden infant death syndrome, cardiac arrhythmic death, heart failure, and certain congenital heart defects in children from diabetic pregnancies. However, the mechanisms by which maternal diabetes affects the development of the cardiac sympathetic system and, consequently, heightens health risks and predisposes to cardiovascular disease remain poorly understood. METHODS AND RESULTS: In the mouse model, we performed a comprehensive analysis of the combined impact of a Hif1a-deficient sympathetic system and the maternal diabetes environment on both heart development and the formation of the cardiac sympathetic system. The synergic negative effect of exposure to maternal diabetes and Hif1a deficiency resulted in the most pronounced deficit in cardiac sympathetic innervation and the development of the adrenal medulla. Abnormalities in the cardiac sympathetic system were accompanied by a smaller heart, reduced ventricular wall thickness, and dilated subepicardial veins and coronary arteries in the myocardium, along with anomalies in the branching and connections of the main coronary arteries. Transcriptional profiling by RNA sequencing (RNA-seq) revealed significant transcriptome changes in Hif1a-deficient sympathetic neurons, primarily associated with cell cycle regulation, proliferation, and mitosis, explaining the shrinkage of the sympathetic neuron population. DISCUSSION: Our data demonstrate that a failure to adequately activate the HIF-1α regulatory pathway, particularly in the context of maternal diabetes, may contribute to abnormalities in the cardiac sympathetic system. In conclusion, our findings indicate that the interplay between deficiencies in the cardiac sympathetic system and subtle structural alternations in the vasculature, microvasculature, and myocardium during heart development not only increases the risk of cardiovascular disease but also diminishes the adaptability to the stress associated with the transition to extrauterine life, thus increasing the risk of neonatal death.
Faculty of Science Charles University Prague Czechia
Institute of Anatomy 1st Faculty of Medicine Charles University Prague Czechia
Zobrazit více v PubMed
Kobayashi K, Morita S, Sawada H, Mizuguchi T, Yamada K, Nagatsu I, et al. . Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice. J Biol Chem. (1995) 270:27235–43. doi: 10.1074/jbc.270.45.27235 PubMed DOI
Zhou QY, Quaife CJ, Palmiter RD. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature. (1995) 374:640–3. doi: 10.1038/374640a0 PubMed DOI
Rohrer DK, Desai KH, Jasper JR, Stevens ME, Regula DP, Jr., Barsh GS, et al. . Targeted disruption of the mouse beta1-adrenergic receptor gene: developmental and cardiovascular effects. Proc Natl Acad Sci U.S.A. (1996) 93:7375–80. doi: 10.1073/pnas.93.14.7375 PubMed DOI PMC
Coote JH, Chauhan RA. The sympathetic innervation of the heart: Important new insights. Auton Neurosci. (2016) 199:17–23. doi: 10.1016/j.autneu.2016.08.014 PubMed DOI
Kawano H, Okada R, Yano K. Histological study on the distribution of autonomic nerves in the human heart. Heart Vessels. (2003) 18:32–9. doi: 10.1007/s003800300005 PubMed DOI
Nam J, Onitsuka I, Hatch J, Uchida Y, Ray S, Huang S, et al. . Coronary veins determine the pattern of sympathetic innervation in the developing heart. Development. (2013) 140:1475–85. doi: 10.1242/dev.087601 PubMed DOI PMC
Huber K. The sympathoadrenal cell lineage: specification, diversification, and new perspectives. Dev Biol. (2006) 298:335–43. doi: 10.1016/j.ydbio.2006.07.010 PubMed DOI
Gonsalvez DG, Cane KN, Landman KA, Enomoto H, Young HM, Anderson CR. Proliferation and cell cycle dynamics in the developing stellate ganglion. J Neurosci. (2013) 33:5969–79. doi: 10.1523/JNEUROSCI.4350-12.2013 PubMed DOI PMC
Goridis C, Rohrer H. Specification of catecholaminergic and serotonergic neurons. Nat Rev Neurosci. (2002) 3:531–41. doi: 10.1038/nrn871 PubMed DOI
Scott-Solomon E, Boehm E, Kuruvilla R. The sympathetic nervous system in development and disease. Nat Rev Neurosci. (2021) 22:685–702. doi: 10.1038/s41583-021-00523-y PubMed DOI PMC
Glebova NO, Ginty DD. Growth and survival signals controlling sympathetic nervous system development. Annu Rev Neurosci. (2005) 28:191–222. doi: 10.1146/annurev.neuro.28.061604.135659 PubMed DOI
Kuruvilla R, Zweifel LS, Glebova NO, Lonze BE, Valdez G, Ye H, et al. . A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell. (2004) 118:243–55. doi: 10.1016/j.cell.2004.06.021 PubMed DOI
Honma Y, Araki T, Gianino S, Bruce A, Heuckeroth R, Johnson E, et al. . Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron. (2002) 35:267–82. doi: 10.1016/S0896-6273(02)00774-2 PubMed DOI
Makita T, Sucov HM, Gariepy CE, Yanagisawa M, Ginty DD. Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature. (2008) 452:759–63. doi: 10.1038/nature06859 PubMed DOI PMC
Glebova NO, Ginty DD. Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J Neurosci. (2004) 24:743–51. doi: 10.1523/JNEUROSCI.4523-03.2004 PubMed DOI PMC
Ieda M, Kanazawa H, Kimura K, Hattori F, Ieda Y, Taniguchi M, et al. . Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat Med. (2007) 13:604–12. doi: 10.1038/nm1570 PubMed DOI
Manousiouthakis E, Mendez M, Garner MC, Exertier P, Makita T. Venous endothelin guides sympathetic innervation of the developing mouse heart. Nat Commun. (2014) 5:3918. doi: 10.1038/ncomms4918 PubMed DOI PMC
Luther JA, Birren SJ. Neurotrophins and target interactions in the development and regulation of sympathetic neuron electrical and synaptic properties. Auton Neurosci. (2009) 151:46–60. doi: 10.1016/j.autneu.2009.08.009 PubMed DOI PMC
Kreipke RE, Birren SJ. Innervating sympathetic neurons regulate heart size and the timing of cardiomyocyte cell cycle withdrawal. J Physiol. (2015) 593:5057–73. doi: 10.1113/JP270917 PubMed DOI PMC
Liu H, Zhang CH, Ammanamanchi N, Suresh S, Lewarchik C, Rao K, et al. . Control of cytokinesis by beta-adrenergic receptors indicates an approach for regulating cardiomyocyte endowment. Sci Transl Med. (2019) 11:513. doi: 10.1126/scitranslmed.aaw6419 PubMed DOI PMC
Clarke GL, Bhattacherjee A, Tague SE, Hasan W, Smith PG. ß-adrenoceptor blockers increase cardiac sympathetic innervation by inhibiting autoreceptor suppression of axon growth. J Neurosci. (2010) 30:12446–54. doi: 10.1523/JNEUROSCI.1667-10.2010 PubMed DOI PMC
Kowalski WJ, Garcia-Pak IH, Li W, Uosaki H, Tampakakis E, Zou J, et al. . Sympathetic neurons regulate cardiomyocyte maturation in culture. Front Cell Dev Biol. (2022) 10:850645. doi: 10.3389/fcell.2022.850645 PubMed DOI PMC
Kahn A, Groswasser J, Franco P, Scaillet S, Sawaguchi T, Kelmanson I, et al. . Sudden infant deaths: stress, arousal and SIDS. Early Hum Dev. (2003) 75 Suppl:S147–66. doi: 10.1016/j.earlhumdev.2003.08.018 PubMed DOI
Ohuchi H, Negishi J, Miyake A, Sakaguchi H, Miyazaki A, Yamada O. Long-term prognostic value of cardiac autonomic nervous activity in postoperative patients with congenital heart disease. Int J Cardiol. (2011) 151:296–302. doi: 10.1016/j.ijcard.2010.05.062 PubMed DOI
Vaseghi M, Shivkumar K. The role of the autonomic nervous system in sudden cardiac death. Prog Cardiovasc Dis. (2008) 50:404–19. doi: 10.1016/j.pcad.2008.01.003 PubMed DOI PMC
Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res. (2018) 122:624–38. doi: 10.1161/CIRCRESAHA.117.311586 PubMed DOI PMC
Hrabalova P, Bohuslavova R, Matejkova K, Papousek F, Sedmera D, Abaffy P, et al. . Dysregulation of hypoxia-inducible factor 1alpha in the sympathetic nervous system accelerates diabetic cardiomyopathy. Cardiovasc Diabetol. (2023) 22:88. doi: 10.1186/s12933-023-01824-5 PubMed DOI PMC
Silka MJ, Hardy BG, Menashe VD, Morris CD. A population-based prospective evaluation of risk of sudden cardiac death after operation for common congenital heart defects. J Am Coll Cardiol. (1998) 32:245–51. doi: 10.1016/S0735-1097(98)00187-9 PubMed DOI
Bohuslavova R, Cerychova R, Papousek F, Olejnickova V, Bartos M, Gorlach A, et al. . HIF-1alpha is required for development of the sympathetic nervous system. Proc Natl Acad Sci U.S.A. (2019) 116:13414–23. doi: 10.1073/pnas.1903510116 PubMed DOI PMC
Semenza GL. Oxygen sensing, homeostasis, and disease. New Engl J Med. (2011) 365:537–47. doi: 10.1056/NEJMra1011165 PubMed DOI
Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. New Engl J Med. (2000) 342:626–33. doi: 10.1056/NEJM200003023420904 PubMed DOI
Semenza GL. Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol. (2014) 76:39–56. doi: 10.1146/annurev-physiol-021113-170322 PubMed DOI PMC
Knutson AK, Williams AL, Boisvert WA, Shohet RV. HIF in the heart: development, metabolism, ischemia, and atherosclerosis. J Clin Invest. (2021) 131(17):e137557. doi: 10.1172/JCI137557 PubMed DOI PMC
Krishnan J, Ahuja P, Bodenmann S, Knapik D, Perriard E, Krek W, et al. . Essential role of developmentally activated hypoxia-inducible factor 1alpha for cardiac morphogenesis and function. Circ Res. (2008) 103:1139–46. doi: 10.1161/01.RES.0000338613.89841.c1 PubMed DOI
Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, et al. . Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. (1998) 12:149–62. doi: 10.1101/gad.12.2.149 PubMed DOI PMC
Kotch LE, Iyer NV, Laughner E, Semenza GL. Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol. (1999) 209:254–67. doi: 10.1006/dbio.1999.9253 PubMed DOI
Cerychova R, Bohuslavova R, Papousek F, Sedmera D, Abaffy P, Benes V, et al. . Adverse effects of Hif1a mutation and maternal diabetes on the offspring heart. Cardiovasc Diabetol. (2018) 17:68. doi: 10.1186/s12933-018-0713-0 PubMed DOI PMC
Bae S, Xiao Y, Li G, Casiano CA, Zhang L. Effect of maternal chronic hypoxic exposure during gestation on apoptosis in fetal rat heart. Am J Physiol Heart Circ Physiol. (2003) 285:H983–90. doi: 10.1152/ajpheart.00005.2003 PubMed DOI
Patterson AJ, Chen M, Xue Q, Xiao D, Zhang L. Chronic prenatal hypoxia induces epigenetic programming of PKCepsilon gene repression in rat hearts. Circ Res. (2010) 107:365–73. doi: 10.1161/CIRCRESAHA.110.221259 PubMed DOI PMC
Bohuslavova R, Skvorova L, Sedmera D, Semenza GL, Pavlinkova G. Increased susceptibility of HIF-1alpha heterozygous-null mice to cardiovascular malformations associated with maternal diabetes. J Mol Cell Cardiol. (2013) 60:129–41. doi: 10.1016/j.yjmcc.2013.04.015 PubMed DOI
Cerychova R, Pavlinkova G. HIF-1, metabolism, and diabetes in the embryonic and adult heart. Front Endocrinol (Lausanne). (2018) 9:460. doi: 10.3389/fendo.2018.00460 PubMed DOI PMC
Giussani DA, Davidge ST. Developmental programming of cardiovascular disease by prenatal hypoxia. J Dev Orig Health Dis. (2013) 4:328–37. doi: 10.1017/S204017441300010X PubMed DOI
Friedman JE. Developmental programming of obesity and diabetes in mouse, monkey, and man in 2018: where are we headed? Diabetes. (2018) 67:2137–51. doi: 10.2337/dbi17-0011 PubMed DOI PMC
Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM, et al. . Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res. (2000) 60:4010–5. PubMed
McLenachan S, Goldshmit Y, Fowler KJ, Voullaire L, Holloway TP, Turnley AM, et al. . Transgenic mice expressing the Peripherin-EGFP genomic reporter display intrinsic peripheral nervous system fluorescence. Transgenic Res. (2008) 17:1103–16. doi: 10.1007/s11248-008-9210-7 PubMed DOI
Elliott KL, Kersigo J, Lee JH, Jahan I, Pavlinkova G, Fritzsch B, et al. . Developmental changes in peripherin-eGFP expression in spiral ganglion neurons. Front Cell Neurosci. (2021) 15:678113. doi: 10.3389/fncel.2021.678113 PubMed DOI PMC
Miquerol L, Meysen S, Mangoni M, Bois P, van Rijen HV, Abran P, et al. . Architectural and functional asymmetry of the His-Purkinje system of the murine heart. Cardiovasc Res. (2004) 63:77–86. doi: 10.1016/j.cardiores.2004.03.007 PubMed DOI
Bohuslavova R, Kolar F, Sedmera D, Skvorova L, Papousek F, Neckar J, et al. . Partial deficiency of HIF-1alpha stimulates pathological cardiac changes in streptozotocin-induced diabetic mice. BMC Endocr Disord. (2014) 14:11. doi: 10.1186/1472-6823-14-11 PubMed DOI PMC
Susaki EA, Tainaka K, Perrin D, Yukinaga H, Kuno A, Ueda HR. Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat Protoc. (2015) 10:1709–27. doi: 10.1038/nprot.2015.085 PubMed DOI
Filova I, Pysanenko K, Tavakoli M, Vochyanova S, Dvorakova M, Bohuslavova R, et al. . ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization. Proc Natl Acad Sci U.S.A. (2022) 119:e2207433119. doi: 10.1073/pnas.2207433119 PubMed DOI PMC
Kolesova H, Bartos M, Hsieh WC, Olejnickova V, Sedmera D. Novel approaches to study coronary vasculature development in mice. Dev Dyn. (2018) 247:1018–27. doi: 10.1002/dvdy.24637 PubMed DOI
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. . STAR: ultrafast universal RNA-seq aligner. Bioinformatics. (2013) 29:15–21. doi: 10.1093/bioinformatics/bts635 PubMed DOI PMC
Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. (2011) 12:671–82. doi: 10.1038/nrg3068 PubMed DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. (2014) 30:2114–20. doi: 10.1093/bioinformatics/btu170 PubMed DOI PMC
Kopylova E, Noe L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. (2012) 28:3211–7. doi: 10.1093/bioinformatics/bts611 PubMed DOI
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. (2014) 15:550. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. . Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. (2003) 13:2498–504. doi: 10.1101/gr.1239303 PubMed DOI PMC
Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PloS One. (2010) 5:e13984. doi: 10.1371/journal.pone.0013984 PubMed DOI PMC
Bohuslavova R, Cerychova R, Nepomucka K, Pavlinkova G. Renal injury is accelerated by global hypoxia-inducible factor 1 alpha deficiency in a mouse model of STZ-induced diabetes. BMC Endocr Disord. (2017) 17:48. doi: 10.1186/s12902-017-0200-8 PubMed DOI PMC
Hildreth V, Anderson RH, Henderson DJ. Autonomic innervation of the developing heart: origins and function. Clin Anat. (2009) 22:36–46. doi: 10.1002/ca.20695 PubMed DOI
Ieda M, Kanazawa H, Ieda Y, Kimura K, Matsumura K, Tomita Y, et al. . Nerve growth factor is critical for cardiac sensory innervation and rescues neuropathy in diabetic hearts. Circulation. (2006) 114:2351–63. doi: 10.1161/CIRCULATIONAHA.106.627588 PubMed DOI
Huber K, Narasimhan P, Shtukmaster S, Pfeifer D, Evans SM, Sun Y. The LIM-Homeodomain transcription factor Islet-1 is required for the development of sympathetic neurons and adrenal chromaffin cells. Dev Biol. (2013) 380:286–98. doi: 10.1016/j.ydbio.2013.04.027 PubMed DOI PMC
Kim AH, Puram SV, Bilimoria PM, Ikeuchi Y, Keough S, Wong M, et al. . A centrosomal Cdc20-APC pathway controls dendrite morphogenesis in postmitotic neurons. Cell. (2009) 136:322–36. doi: 10.1016/j.cell.2008.11.050 PubMed DOI PMC
Wang L, Wang R, Herrup K. E2F1 works as a cell cycle suppressor in mature neurons. J Neurosci. (2007) 27:12555–64. doi: 10.1523/JNEUROSCI.3681-07.2007 PubMed DOI PMC
Hagey DW, Topcic D, Kee N, Reynaud F, Bergsland M, Perlmann T, et al. . CYCLIN-B1/2 and -D1 act in opposition to coordinate cortical progenitor self-renewal and lineage commitment. Nat Commun. (2020) 11:2898. doi: 10.1038/s41467-020-16597-8 PubMed DOI PMC
Joseph NF, Swarnkar S, Puthanveettil SV. Double duty: mitotic kinesins and their post-mitotic functions in neurons. Cells. (2021) 10(1):136. doi: 10.3390/cells10010136 PubMed DOI PMC
Ruan X, Kang B, Qi C, Lin W, Wang J, Zhang X. Progenitor cell diversity in the developing mouse neocortex. Proc Natl Acad Sci U.S.A. (2021) 118(10):e2018866118. doi: 10.1073/pnas.2018866118 PubMed DOI PMC
Song H, Zhuang L, Xu X, Shi J, Hu W, Liu Z, et al. . MCC regulator of WNT signaling pathway (MCC) is a podocyte essential gene. Front Med (Lausanne). (2021) 8:777563. doi: 10.3389/fmed.2021.777563 PubMed DOI PMC
Shi Y, Li Y, Yin J, Hu H, Xue M, Li X, et al. . A novel sympathetic neuronal GABAergic signalling system regulates NE release to prevent ventricular arrhythmias after acute myocardial infarction. Acta Physiol (Oxf). (2019) 227:e13315. doi: 10.1111/apha.13315 PubMed DOI PMC
Rubio-Aliaga I, Wagner CA. Regulation and function of the SLC38A3/SNAT3 glutamine transporter. Channels (Austin). (2016) 10:440–52. doi: 10.1080/19336950.2016.1207024 PubMed DOI PMC
Tsarovina K, Pattyn A, Stubbusch J, Muller F, van der Wees J, Schneider C, et al. . Essential role of Gata transcription factors in sympathetic neuron development. Development. (2004) 131:4775–86. doi: 10.1242/dev.01370 PubMed DOI
Ziegler GC, Almos P, McNeill RV, Jansch C, Lesch KP. Cellular effects and clinical implications of SLC2A3 copy number variation. J Cell Physiol. (2020) 235:9021–36. doi: 10.1002/jcp.29753 PubMed DOI
Riessland M, Kaczmarek A, Schneider S, Swoboda KJ, Lohr H, Bradler C, et al. . Neurocalcin Delta Suppression Protects against Spinal Muscular Atrophy in Humans and across Species by Restoring Impaired Endocytosis. Am J Hum Genet. (2017) 100:297–315. doi: 10.1016/j.ajhg.2017.01.005 PubMed DOI PMC
Avazzadeh S, Quinlan LR, Reilly J, McDonagh K, Jalali A, Wang Y, et al. . NRXN1α+/- is associated with increased excitability in ASD iPSC-derived neurons. BMC Neurosci. (2021) 22:56. doi: 10.1186/s12868-021-00661-0 PubMed DOI PMC
Fagan AM, Zhang H, Landis S, Smeyne RJ, Silos-Santiago I, Barbacid M. TrkA, but not TrkC, receptors are essential for survival of sympathetic neurons in vivo. J Neurosci. (1996) 16:6208–18. doi: 10.1523/JNEUROSCI.16-19-06208.1996 PubMed DOI PMC
Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, et al. . Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature. (1994) 368:246–9. doi: 10.1038/368246a0 PubMed DOI
Petronczki M, Lenart P, Peters JM. Polo on the rise-from mitotic entry to cytokinesis with Plk1. Dev Cell. (2008) 14:646–59. doi: 10.1016/j.devcel.2008.04.014 PubMed DOI
Martinez-Frias ML. Epidemiological analysis of outcomes of pregnancy in diabetic mothers: identification of the most characteristic and most frequent congenital anomalies. Am J Med Genet. (1994) 51:108–13. doi: 10.1002/ajmg.1320510206 PubMed DOI
Oyen N, Diaz LJ, Leirgul E, Boyd HA, Priest J, Mathiesen ER, et al. . Prepregnancy diabetes and offspring risk of congenital heart disease: A nationwide cohort study. Circulation. (2016) 133:2243–53. doi: 10.1161/CIRCULATIONAHA.115.017465 PubMed DOI PMC
Tennant PWG, Glinianaia SV, Bilous RW, Rankin J, Bell R, diabetes P-e. maternal glycated haemoglobin, and the risks of fetal and infant death: a population-based study. Diabetologia. (2014) 57:285–94. doi: 10.1007/s00125-013-3108-5 PubMed DOI
Dabelea D, Hanson RL, Lindsay RS, Pettitt DJ, Imperatore G, Gabir MM, et al. . Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes. (2000) 49:2208–11. doi: 10.2337/diabetes.49.12.2208 PubMed DOI
Manderson JG, Mullan B, Patterson CC, Hadden DR, Traub AI, McCance DR. Cardiovascular and metabolic abnormalities in the offspring of diabetic pregnancy. Diabetologia. (2002) 45:991–6. doi: 10.1007/s00125-002-0865-y PubMed DOI
Holemans K, Gerber RT, Meurrens K, De Clerck F, Poston L, Van Assche FA. Streptozotocin diabetes in the pregnant rat induces cardiovascular dysfunction in adult offspring. Diabetologia. (1999) 42:81–9. doi: 10.1007/s001250051117 PubMed DOI
Kvetnansky R, Sabban EL, Palkovits M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev. (2009) 89:535–606. doi: 10.1152/physrev.00042.2006 PubMed DOI
Dequattro V, Nagatsu T, Mendez A, Verska J. Determinants of cardiac noradrenaline depletion in human congestive failure. Cardiovasc Res. (1973) 7:344–50. doi: 10.1093/cvr/7.3.344 PubMed DOI
Kaludercic N, Takimoto E, Nagayama T, Feng N, Lai EW, Bedja D, et al. . Monoamine oxidase A-mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res. (2010) 106:193–202. doi: 10.1161/CIRCRESAHA.109.198366 PubMed DOI PMC