HIF-1, Metabolism, and Diabetes in the Embryonic and Adult Heart

. 2018 ; 9 () : 460. [epub] 20180815

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30158902

The heart is able to metabolize any substrate, depending on its availability, to satisfy its energy requirements. Under normal physiological conditions, about 95% of ATP is produced by oxidative phosphorylation and the rest by glycolysis. Cardiac metabolism undergoes reprograming in response to a variety of physiological and pathophysiological conditions. Hypoxia-inducible factor 1 (HIF-1) mediates the metabolic adaptation to hypoxia and ischemia, including the transition from oxidative to glycolytic metabolism. During embryonic development, HIF-1 protects the embryo from intrauterine hypoxia, its deletion as well as its forced expression are embryonically lethal. A decrease in HIF-1 activity is crucial during perinatal remodeling when the heart switches from anaerobic to aerobic metabolism. In the adult heart, HIF-1 protects against hypoxia, although its deletion in cardiomyocytes affects heart function even under normoxic conditions. Diabetes impairs HIF-1 activation and thus, compromises HIF-1 mediated responses under oxygen-limited conditions. Compromised HIF-1 signaling may contribute to the teratogenicity of maternal diabetes and diabetic cardiomyopathy in adults. In this review, we discuss the function of HIF-1 in the heart throughout development into adulthood, as well as the deregulation of HIF-1 signaling in diabetes and its effects on the embryonic and adult heart.

Zobrazit více v PubMed

Wheaton WW, Chandel NS. Hypoxia. 2. Hypoxia regulates cellular metabolism. Am J Physiol Cell Physiol. (2011) 300:C385–93. 10.1152/ajpcell.00485.2010 PubMed DOI PMC

Kaluz S, Kaluzova M, Stanbridge EJ. Regulation of gene expression by hypoxia: integration of the HIF-transduced hypoxic signal at the hypoxia-responsive element. Clin Chim Acta (2008) 395:6–13. 10.1016/j.cca.2008.05.002 PubMed DOI PMC

Semenza GL. Oxygen sensing, homeostasis, and disease. N Engl J Med. (2011) 365:537–47. 10.1056/NEJMra1011165 PubMed DOI

Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem. (2002) 277:23111–5. 10.1074/jbc.M202487200 PubMed DOI

Bartrons R, Caro J. Hypoxia, glucose metabolism and the Warburg's effect. J Bioenerg Biomembr. (2007) 39:223–9. 10.1007/s10863-007-9080-3 PubMed DOI

Brand KA, Hermfisse U. Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J. (1997) 11:388–95. PubMed

Jauniaux E, Watson A, Burton G. Evaluation of respiratory gases and acid-base gradients in human fetal fluids and uteroplacental tissue between 7 and 16 weeks' gestation. Am J Obstet Gynecol. (2001) 184:998–1003. 10.1067/mob.2001.111935 PubMed DOI

Rodesch F, Simon P, Donner C, Jauniaux E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol. (1992) 80:283–5. PubMed

Houghton FD, Thompson JG, Kennedy CJ, Leese HJ. Oxygen consumption and energy metabolism of the early mouse embryo. Mol Reprod Dev. (1996) 44:476–85. PubMed

Lee YM, Jeong CH, Koo SY, Son MJ, Song HS, Bae SK, et al. . Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: a possible signal for vessel development. Dev Dyn. (2001) 220:175–86. 10.1002/1097-0177(20010201)220:2<175::AID-DVDY1101>3.0.CO;2-F PubMed DOI

Dunwoodie SL. The role of hypoxia in development of the Mammalian embryo. Dev Cell (2009) 17:755–73. 10.1016/j.devcel.2009.11.008 PubMed DOI

Moorman A, Webb S, Brown NA, Lamers W, Anderson RH. Development of the heart: (1) formation of the cardiac chambers and arterial trunks. Heart (2003) 89:806–814. 10.1136/heart.89.7.806 PubMed DOI PMC

Ream M, Ray AM, Chandra R, Chikaraishi DM. Early fetal hypoxia leads to growth restriction and myocardial thinning. Am J Physiol Regul Integr Comp Physiol. (2008) 295:R583–95. 10.1152/ajpregu.00771.2007 PubMed DOI PMC

Kenchegowda D, Liu H, Thompson K, Luo L, Martin SS, Fisher SA. Vulnerability of the developing heart to oxygen deprivation as a cause of congenital heart defects. J Am Heart Assoc. (2014) 3:e000841. 10.1161/JAHA.114.000841 PubMed DOI PMC

Wikenheiser J, Doughman YQ, Fisher SA, Watanabe M. Differential levels of tissue hypoxia in the developing chicken heart. Dev Dyn. (2006) 235:115–23. 10.1002/dvdy.20499 PubMed DOI

Sugishita Y, Leifer DW, Agani F, Watanabe M, Fisher SA. Hypoxia-responsive signaling regulates the apoptosis-dependent remodeling of the embryonic avian cardiac outflow tract. Dev Biol. (2004) 273:285–96. 10.1016/j.ydbio.2004.05.036 PubMed DOI

Wikenheiser J, Wolfram JA, Gargesha M, Yang K, Karunamuni G, Wilson DL, et al. . Altered hypoxia-inducible factor-1 alpha expression levels correlate with coronary vessel anomalies. Dev Dyn. (2009) 238:2688–700. 10.1002/dvdy.22089 PubMed DOI PMC

Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, et al. . Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. (1998) 12:149–62. PubMed PMC

Kotch LE, Iyer NV, Laughner E, Semenza GL. Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol. (1999) 209:254–67. 10.1006/dbio.1999.9253 PubMed DOI

Compernolle V, Brusselmans K, Franco D, Moorman A, Dewerchin M, Collen D, et al. . Cardia bifida, defective heart development and abnormal neural crest migration in embryos lacking hypoxia-inducible factor-1alpha. Cardiovasc Res. (2003) 60:569–79. 10.1016/j.cardiores.2003.07.003 PubMed DOI

Huang Y, Hickey RP, Yeh JL, Liu D, Dadak A, Young LH, et al. . Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB J. (2004) 18:1138–40. 10.1096/fj.04-1510fje PubMed DOI

Krishnan J, Ahuja P, Bodenmann S, Knapik D, Perriard E, Krek W, et al. . Essential role of developmentally activated hypoxia-inducible factor 1alpha for cardiac morphogenesis and function. Circ Res. (2008) 103:1139–46. 10.1161/01.RES.0000338613.89841.c1 PubMed DOI

Guimaraes-Camboa N, Stowe J, Aneas I, Sakabe N, Cattaneo P, Henderson L, et al. . HIF1alpha represses cell stress pathways to allow proliferation of hypoxic fetal cardiomyocytes. Dev Cell (2015) 33:507–21. 10.1016/j.devcel.2015.04.021 PubMed DOI PMC

Tallquist MD, Soriano P. Epiblast-restricted Cre expression in MORE mice: a tool to distinguish embryonic vs. extra-embryonic gene function. Genesis (2000) 26:113–5. 10.1002/(SICI)1526-968X(200002)26:2<113::AID-GENE3>3.0.CO;2-2 PubMed DOI

Licht AH, Muller-Holtkamp F, Flamme I, Breier G. Inhibition of hypoxia-inducible factor activity in endothelial cells disrupts embryonic cardiovascular development. Blood (2006) 107:584–90. 10.1182/blood-2005-07-3033 PubMed DOI

Gnarra JR, Ward JM, Porter FD, Wagner JR, Devor DE, Grinberg A, et al. . Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc Natl Acad Sci USA. (1997) 94:9102–7. PubMed PMC

Hong SB, Furihata M, Baba M, Zbar B, Schmidt LS. Vascular defects and liver damage by the acute inactivation of the VHL gene during mouse embryogenesis. Lab Invest. (2006) 86:664–75. 10.1038/labinvest.3700431 PubMed DOI

Kaidi A, Williams AC, Paraskeva C. Interaction between β-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol. (2007) 9:210–7. 10.1038/ncb1534 PubMed DOI

Sainson RC, Harris AL. Hypoxia-regulated differentiation: let's step it up a Notch. Trends Mol Med. (2006) 12:141–3. 10.1016/j.molmed.2006.02.001 PubMed DOI

Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, et al. . Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell (2005) 9:617–28. 10.1016/j.devcel.2005.09.010 PubMed DOI

Flynt AS, Lai EC. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet. (2008) 9:831–42. 10.1038/nrg2455 PubMed DOI PMC

Martinez SR, Ma Q, Dasgupta C, Meng X, Zhang L. MicroRNA-210 suppresses glucocorticoid receptor expression in response to hypoxia in fetal rat cardiomyocytes. Oncotarget (2017) 8:80249–64. 10.18632/oncotarget.17801 PubMed DOI PMC

Hu S, Huang M, Li Z, Jia F, Ghosh Z, Lijkwan MA, et al. . MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation (2010) 122(11 Suppl.):S124–31. 10.1161/CIRCULATIONAHA.109.928424 PubMed DOI PMC

Thum T, Catalucci D, Bauersachs J. MicroRNAs: novel regulators in cardiac development and disease. Cardiovasc Res. (2008) 79:562–70. 10.1093/cvr/cvn137 PubMed DOI

Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, et al. . MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation (2007) 116:258–67. 10.1161/CIRCULATIONAHA.107.687947 PubMed DOI

Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (2009) 324:1029–33. 10.1126/science.1160809 PubMed DOI PMC

Miyazawa H, Yamaguchi Y, Sugiura Y, Honda K, Kondo K, Matsuda F, et al. . Rewiring of embryonic glucose metabolism via suppression of PFK-1 and aldolase during mouse chorioallantoic branching. Development (2017) 144:63–73. 10.1242/dev.138545 PubMed DOI PMC

Herrera E, Amusquivar E. Lipid metabolism in the fetus and the newborn. Diabetes Metab Res Rev. (2000) 16:202–10. 10.1385/ENDO:19:1:43 PubMed DOI

Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H. Metabolic gene expression in fetal and failing human heart. Circulation (2001) 104:2923–31. 10.1161/hc4901.100526 PubMed DOI

Ascuitto RJ, Ross-Ascuitto NT. Substrate metabolism in the developing heart. Semin Perinatol. (1996) 20:542–63. PubMed

Iruretagoyena JI, Davis W, Bird C, Olsen J, Radue R, Teo Broman A, et al. . Metabolic gene profile in early human fetal heart development. Mol Hum Reprod. (2014) 20:690–700. 10.1093/molehr/gau026 PubMed DOI

Yamashita T, Ohneda O, Nagano M, Iemitsu M, Makino Y, Tanaka H, et al. . Abnormal heart development and lung remodeling in mice lacking the hypoxia-inducible factor-related basic helix-loop-helix PAS protein NEPAS. Mol Cell Biol. (2008) 28:1285–97. 10.1128/MCB.01332-07 PubMed DOI PMC

Menendez-Montes I, Escobar B, Palacios B, Gomez MJ, Izquierdo-Garcia JL, Flores L, et al. . Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation. Dev Cell (2016) 39:724–39. 10.1016/j.devcel.2016.11.012 PubMed DOI

Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure. Circulation (2007) 116:434–48. 10.1161/CIRCULATIONAHA.107.702795 PubMed DOI

Neary MT, Ng KE, Ludtmann MH, Hall AR, Piotrowska I, Ong SB, et al. . Hypoxia signaling controls postnatal changes in cardiac mitochondrial morphology and function. J Mol Cell Cardiol. (2014) 74:340–52. 10.1016/j.yjmcc.2014.06.013 PubMed DOI PMC

Hirschy A, Schatzmann F, Ehler E, Perriard JC. Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol. (2006) 289:430–41. 10.1016/j.ydbio.2005.10.046 PubMed DOI

Siedner S, Kruger M, Schroeter M, Metzler D, Roell W, Fleischmann BK, et al. . Developmental changes in contractility and sarcomeric proteins from the early embryonic to the adult stage in the mouse heart. J Physiol. (2003) 548(Pt 2):493–505. 10.1113/jphysiol.2002.036509 PubMed DOI PMC

Bino L, Prochazkova J, Radaszkiewicz KA, Kucera J, Kudova J, Pachernik J, et al. . Hypoxia favors myosin heavy chain beta gene expression in an Hif-1alpha-dependent manner. Oncotarget (2017) 8:83684–97. 10.18632/oncotarget.19016 PubMed DOI PMC

Galler S, Puchert E, Gohlsch B, Schmid D, Pette D. Kinetic properties of cardiac myosin heavy chain isoforms in rat. Pflugers Arch. (2002) 445:218–23. 10.1007/s00424-002-0934-6 PubMed DOI

Wang Y, Tanner BC, Lombardo AT, Tremble SM, Maughan DW, Vanburen P, et al. . Cardiac myosin isoforms exhibit differential rates of MgADP release and MgATP binding detected by myocardial viscoelasticity. J Mol Cell Cardiol. (2013) 54:1–8. 10.1016/j.yjmcc.2012.10.010 PubMed DOI PMC

Walker CA, Spinale FG. The structure and function of the cardiac myocyte: a review of fundamental concepts. J Thorac Cardiovasc Surg. (1999) 118:375–82. 10.1016/S0022-5223(99)70233-3 PubMed DOI

Kodde IF, van der Stok J, Smolenski RT, de Jong JW. Metabolic and genetic regulation of cardiac energy substrate preference. Comp Biochem Physiol A Mol Integr Physiol. (2007) 146:26–39. 10.1016/j.cbpa.2006.09.014 PubMed DOI

Essop MF. Cardiac metabolic adaptations in response to chronic hypoxia. J Physiol. (2007) 584(Pt 3):715–26. 10.1113/jphysiol.2007.143511 PubMed DOI PMC

Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. (2006) 3:177–85. 10.1016/j.cmet.2006.02.002 PubMed DOI

Holscher M, Schafer K, Krull S, Farhat K, Hesse A, Silter M, et al. . Unfavourable consequences of chronic cardiac HIF-1alpha stabilization. Cardiovasc Res. (2012) 94:77–86. 10.1093/cvr/cvs014 PubMed DOI

Bekeredjian R, Walton CB, MacCannell KA, Ecker J, Kruse F, Outten JT, et al. . Conditional HIF-1alpha expression produces a reversible cardiomyopathy. PLoS ONE (2010) 5:e11693. 10.1371/journal.pone.0011693 PubMed DOI PMC

Moslehi J, Minamishima YA, Shi J, Neuberg D, Charytan DM, Padera RF, et al. . Loss of hypoxia-inducible factor prolyl hydroxylase activity in cardiomyocytes phenocopies ischemic cardiomyopathy. Circulation (2010) 122:1004–16. 10.1161/CIRCULATIONAHA.109.922427 PubMed DOI PMC

Lei L, Mason S, Liu D, Huang Y, Marks C, Hickey R, et al. . Hypoxia-inducible factor-dependent degeneration, failure, and malignant transformation of the heart in the absence of the von Hippel-Lindau protein. Mol Cell Biol. (2008) 28:3790–803. 10.1128/MCB.01580-07 PubMed DOI PMC

American Diabetes A. Diagnosis and classification of diabetes mellitus. Diabetes Care (2014) 37 (Suppl. 1):S81–90. 10.2337/dc14-S081 PubMed DOI

Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T, et al. . Hyperglycemic pseudohypoxia and diabetic complications. Diabetes (1993) 42:801–13. PubMed

Gleissner CA, Galkina E, Nadler JL, Ley K. Mechanisms by which diabetes increases cardiovascular disease. Drug Discov Today Dis Mech. (2007) 4:131–40. 10.1016/j.ddmec.2007.12.005 PubMed DOI PMC

Diederen RM, Starnes CA, Berkowitz BA, Winkler BS. Reexamining the hyperglycemic pseudohypoxia hypothesis of diabetic oculopathy. Invest Ophthalmol Vis Sci. (2006) 47:2726–31. 10.1167/iovs.06-0076 PubMed DOI PMC

Bohuslavova R, Skvorova L, Sedmera D, Semenza GL, Pavlinkova G. Increased susceptibility of HIF-1alpha heterozygous-null mice to cardiovascular malformations associated with maternal diabetes. J Mol Cell Cardiol. (2013) 60:129–41. 10.1016/j.yjmcc.2013.04.015 PubMed DOI

Sada K, Nishikawa T, Kukidome D, Yoshinaga T, Kajihara N, Sonoda K, et al. . Hyperglycemia induces cellular hypoxia through production of mitochondrial ROS followed by suppression of aquaporin-1. PLoS ONE (2016) 11:e0158619. 10.1371/journal.pone.0158619 PubMed DOI PMC

Marfella R, D'Amico M, Di Filippo C, Piegari E, Nappo F, Esposito K, et al. . Myocardial infarction in diabetic rats: role of hyperglycaemia on infarct size and early expression of hypoxia-inducible factor 1. Diabetologia (2002) 45:1172–81. 10.1007/s00125-002-0882-x PubMed DOI

Thangarajah H, Yao D, Chang EI, Shi Y, Jazayeri L, Vial IN, et al. . The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci USA. (2009) 106:13505–10. 10.1073/pnas.0906670106 PubMed DOI PMC

Thangarajah H, Vial IN, Grogan RH, Yao D, Shi Y, Januszyk M, et al. . HIF-1alpha dysfunction in diabetes. Cell Cycle (2010) 9:75–9. 10.4161/cc.9.1.10371 PubMed DOI

Isoe T, Makino Y, Mizumoto K, Sakagami H, Fujita Y, Honjo J, et al. . High glucose activates HIF-1-mediated signal transduction in glomerular mesangial cells through a carbohydrate response element binding protein. Kidney Int. (2010) 78:48–59. 10.1038/ki.2010.99 PubMed DOI

Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci USA. (2004) 101:7281–6. 10.1073/pnas.0401516101 PubMed DOI PMC

Catrina SB, Okamoto K, Pereira T, Brismar K, Poellinger L. Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. Diabetes (2004) 53:3226–32. 10.2337/diabetes.53.12.3226 PubMed DOI

Ramalho AR, Toscano A, Pereira P, Girao H, Goncalves L, Marques C. Hyperglycemia-induced degradation of HIF-1alpha contributes to impaired response of cardiomyocytes to hypoxia. Rev Port Cardiol. (2017) 36:367–73. 10.1016/j.repc.2016.09.018 PubMed DOI

Lager S, Powell TL. Regulation of nutrient transport across the placenta. J Pregnancy (2012) 2012:179827. 10.1155/2012/179827 PubMed DOI PMC

Gabbay-Benziv R, Reece EA, Wang F, Yang P. Birth defects in pregestational diabetes: defect range, glycemic threshold and pathogenesis. World J Diabetes (2015) 6:481–8. 10.4239/wjd.v6.i3.481 PubMed DOI PMC

Farrell T, Neale L, Cundy T. Congenital anomalies in the offspring of women with type 1, type 2 and gestational diabetes. Diabet Med. (2002) 19:322–6. 10.1046/j.1464-5491.2002.00700.x PubMed DOI

Wren C, Birrell G, Hawthorne G. Cardiovascular malformations in infants of diabetic mothers. Heart (2003) 89:1217–20. 10.1136/heart.89.10.1217 PubMed DOI PMC

Baack ML, Wang C, Hu S, Segar JL, Norris AW. Hyperglycemia induces embryopathy, even in the absence of systemic maternal diabetes: an in vivo test of the fuel mediated teratogenesis hypothesis. Reprod Toxicol. (2014) 46:129–36. 10.1016/j.reprotox.2014.03.013 PubMed DOI PMC

Ornoy A, Rand SB, Bischitz N. Hyperglycemia and hypoxia are interrelated in their teratogenic mechanism: studies on cultured rat embryos. Birth Defects Res B Dev Reprod Toxicol. (2010) 89:106–15. 10.1002/bdrb.20230 PubMed DOI

Li R, Chase M, Jung SK, Smith PJ, Loeken MR. Hypoxic stress in diabetic pregnancy contributes to impaired embryo gene expression and defective development by inducing oxidative stress. Am J Physiol Endocrinol Metab. (2005) 289:E591–9. 10.1152/ajpendo.00441.2004 PubMed DOI

Pavlinkova G, Salbaum JM, Kappen C. Maternal diabetes alters transcriptional programs in the developing embryo. BMC Genomics (2009) 10:274. 10.1186/1471-2164-10-274 PubMed DOI PMC

Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, et al. . Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood (2005) 105:659–69. 10.1182/blood-2004-07-2958 PubMed DOI

Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, et al. . Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature (1996) 380:435–9. 10.1038/380435a0 PubMed DOI

Miquerol L, Langille BL, Nagy A. Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development (2000) 127:3941–6. PubMed

Yang P, Reece EA. Role of HIF-1alpha in maternal hyperglycemia-induced embryonic vasculopathy. Am J Obstet Gynecol. (2011) 204:332.e331–7. 10.1016/j.ajog.2011.01.012 PubMed DOI PMC

Stroka DM, Burkhardt T, Desbaillets I, Wenger RH, Neil DA, Bauer C, et al. . HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. Faseb J. (2001) 15:2445–53. 10.1096/fj.01-0125com PubMed DOI

Vijaya M, Manikandan J, Parakalan R, Dheen ST, Kumar SD, Tay SS. Differential gene expression profiles during embryonic heart development in diabetic mice pregnancy. Gene (2013) 516:218–27. 10.1016/j.gene.2012.12.071 PubMed DOI

Bohuslavova R, Skvorova L, Cerychova R, Pavlinkova G. Gene expression profiling of changes induced by maternal diabetes in the embryonic heart. Reprod Toxicol. (2015) 57:147–56. 10.1016/j.reprotox.2015.06.045 PubMed DOI

Cerychova R, Bohuslavova R, Papousek F, Sedmera D, Abaffy P, Benes V, et al. . Adverse effects of Hif1a mutation and maternal diabetes on the offspring heart. Cardiovasc Diabetol. (2018) 17:68. 10.1186/s12933-018-0713-0 PubMed DOI PMC

Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord. (2010) 11:31–9. 10.1007/s11154-010-9131-7 PubMed DOI PMC

Bugger H, Abel ED. Rodent models of diabetic cardiomyopathy. Dis Model Mech. (2009) 2:454–66. 10.1242/dmm.001941 PubMed DOI

Masoud GN, Li W. HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. (2015) 5:378–89. 10.1016/j.apsb.2015.05.007 PubMed DOI PMC

Bustin M, Reeves R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol. (1996) 54:35–100. PubMed

Chiefari E, Ventura V, Capula C, Randazzo G, Scorcia V, Fedele M, et al. . A polymorphism of HMGA1 protects against proliferative diabetic retinopathy by impairing HMGA1-induced VEGFA expression. Sci Rep. (2016) 6:39429. 10.1038/srep39429 PubMed DOI PMC

De Rosa S, Chiefari E, Salerno N, Ventura V, D'Ascoli GL, Arcidiacono B, et al. HMGA1 is a novel candidate gene for myocardial infarction susceptibility. Int J Cardiol. (2017) 227:331–4. 10.1016/j.ijcard.2016.11.088 PubMed DOI

Lin Q, Huang Y, Booth CJ, Haase VH, Johnson RS, Celeste Simon M, et al. . Activation of hypoxia-inducible factor-2 in adipocytes results in pathological cardiac hypertrophy. J Am Heart Assoc. (2013) 2:e000548. 10.1161/JAHA.113.000548 PubMed DOI PMC

Giaccia AJ. HIF-2: the missing link between obesity and cardiomyopathy. J Am Heart Assoc. (2013) 2:e000710. 10.1161/JAHA.113.000710 PubMed DOI PMC

Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, et al. . Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler Thromb Vasc Biol. (2006) 26:968–76. 10.1161/01.ATV.0000216787.85457.f3 PubMed DOI

Dehne N, Brune B. HIF-1 in the inflammatory microenvironment. Exp Cell Res. (2009) 315:1791–7. 10.1016/j.yexcr.2009.03.019 PubMed DOI

Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, et al. . HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell (2003) 112:645–57. 10.1038/news030303-8 PubMed DOI PMC

Seferovic PM, Paulus WJ. Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J. (2015) 36:1718–27, 1727a–c. 10.1093/eurheartj/ehv134 PubMed DOI

Schiattarella GG, Hill JA. Metabolic control and oxidative stress in pathological cardiac remodelling. Eur Heart J. (2017) 38:1399–401. 10.1093/eurheartj/ehw199 PubMed DOI

Mansor LS, Mehta K, Aksentijevic D, Carr CA, Lund T, Cole MA, et al. . Increased oxidative metabolism following hypoxia in the type 2 diabetic heart, despite normal hypoxia signalling and metabolic adaptation. J Physiol. (2016) 594:307–20. 10.1113/JP271242 PubMed DOI PMC

Barger PM, Kelly DP. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med. (2000) 10:238–45. 10.1016/S1050-1738(00)00077-3 PubMed DOI

Narravula S, Colgan SP. Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor alpha expression during hypoxia. J Immunol. (2001) 166:7543–8. 10.4049/jimmunol.166.12.7543 PubMed DOI

Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, et al. . The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest. (2002) 109:121–30. 10.1172/JCI14080 PubMed DOI PMC

Lorenzo O, Ramirez E, Picatoste B, Egido J, Tunon J. Alteration of energy substrates and ROS production in diabetic cardiomyopathy. Mediators Inflamm. (2013) 2013:461967. 10.1155/2013/461967 PubMed DOI PMC

Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM, Bouillaud F, et al. . The biology of mitochondrial uncoupling proteins. Diabetes (2004) 53 (Suppl. 1):S130–5. 10.2337/diabetes.53.2007.S130 PubMed DOI

Young ME, Patil S, Ying J, Depre C, Ahuja HS, Shipley GL, et al. . Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor (alpha) in the adult rodent heart. FASEB J. (2001) 15:833–45. 10.1096/fj.00-0351com PubMed DOI

Murray AJ, Panagia M, Hauton D, Gibbons GF, Clarke K. Plasma free fatty acids and peroxisome proliferator-activated receptor alpha in the control of myocardial uncoupling protein levels. Diabetes (2005) 54:3496–502. 10.2337/diabetes.54.12.3496 PubMed DOI

Boudina S, Sena S, Theobald H, Sheng X, Wright JJ, Hu XX, et al. . Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes (2007) 56:2457–66. 10.2337/db07-0481 PubMed DOI

Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation (2006) 114:597–605. 10.1161/CIRCULATIONAHA.106.621854 PubMed DOI

Mann DL. Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ Res. (2015) 116:1254–68. 10.1161/CIRCRESAHA.116.302317 PubMed DOI PMC

Qutub AA, Popel AS. Reactive oxygen species regulate hypoxia-inducible factor 1alpha differentially in cancer and ischemia. Mol Cell Biol. (2008) 28:5106–19. 10.1128/MCB.00060-08 PubMed DOI PMC

Movafagh S, Crook S, Vo K. Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate. J Cell Biochem. (2015) 116:696–703. 10.1002/jcb.25074 PubMed DOI

Greco S, Fasanaro P, Castelvecchio S, D'Alessandra Y, Arcelli D, Di Donato M, et al. . MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes (2012) 61:1633–41. 10.2337/db11-0952 PubMed DOI PMC

Choudhry H, Harris AL. Advances in hypoxia-inducible factor biology. Cell Metab. (2018) 27:281–98. 10.1016/j.cmet.2017.10.005 PubMed DOI

Shantikumar S, Caporali A, Emanueli C. Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res. (2012) 93:583–93. 10.1093/cvr/cvr300 PubMed DOI PMC

Asrih M, Steffens S. Emerging role of epigenetics and miRNA in diabetic cardiomyopathy. Cardiovasc Pathol. (2013) 22:117–25. 10.1016/j.carpath.2012.07.004 PubMed DOI

Chen S, Puthanveetil P, Feng B, Matkovich SJ, Dorn GW, II, Chakrabarti S. Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med. (2014) 18:415–21. 10.1111/jcmm.12218 PubMed DOI PMC

Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. . MicroRNA-133 controls cardiac hypertrophy. Nat Med. (2007) 13:613–18. 10.1038/nm1582 PubMed DOI

Li AY, Yang Q, Yang K. miR-133a mediates the hypoxia-induced apoptosis by inhibiting TAGLN2 expression in cardiac myocytes. Mol Cell Biochem. (2015) 400:173–81. 10.1007/s11010-014-2273-2 PubMed DOI

Horie T, Ono K, Nishi H, Iwanaga Y, Nagao K, Kinoshita M, et al. . MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun. (2009) 389:315–20. 10.1016/j.bbrc.2009.08.136 PubMed DOI

Chavali V, Tyagi SC, Mishra PK. MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes. Biochem Biophys Res Commun. (2012) 425:668–72. 10.1016/j.bbrc.2012.07.105 PubMed DOI PMC

Karakikes I, Chaanine AH, Kang S, Mukete BN, Jeong D, Zhang S, et al. . Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J Am Heart Assoc. (2013) 2:e000078. 10.1161/JAHA.113.000078 PubMed DOI PMC

Yu XY, Song YH, Geng YJ, Lin QX, Shan ZX, Lin SG, et al. . Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochem Biophys Res Commun. (2008) 376:548–52. 10.1016/j.bbrc.2008.09.025 PubMed DOI

Zhai C, Tang G, Peng L, Hu H, Qian G, Wang S, et al. Inhibition of microRNA-1 attenuates hypoxia/re-oxygenation-induced apoptosis of cardiomyocytes by directly targeting Bcl-2 but not GADD45Beta. Am J Transl Res. (2015) 7:1952–62. PubMed PMC

Zheng D, Ma J, Yu Y, Li M, Ni R, Wang G, et al. . Silencing of miR-195 reduces diabetic cardiomyopathy in C57BL/6 mice. Diabetologia (2015) 58:1949–58. 10.1007/s00125-015-3622-8 PubMed DOI PMC

Baseler WA, Thapa D, Jagannathan R, Dabkowski ER, Croston TL, Hollander JM. miR-141 as a regulator of the mitochondrial phosphate carrier (Slc25a3) in the type 1 diabetic heart. Am J Physiol Cell Physiol. (2012) 303:C1244–51. 10.1152/ajpcell.00137.2012 PubMed DOI PMC

de Gonzalo-Calvo D, van der Meer RW, Rijzewijk LJ, Smit JW, Revuelta-Lopez E, Nasarre L, et al. Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes. Sci Rep. (2017) 7:47 10.1038/s41598-017-00070-6 PubMed DOI PMC

Loffler AI, Bourque JM. Coronary microvascular dysfunction, microvascular angina, and management. Curr Cardiol Rep. (2016) 18:1. 10.1007/s11886-015-0682-9 PubMed DOI PMC

Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur Heart J. (2014) 35:1101–11. 10.1093/eurheartj/eht513 PubMed DOI PMC

Kibel A, Selthofer-Relatic K, Drenjancevic I, Bacun T, Bosnjak I, Kibel D, et al. . Coronary microvascular dysfunction in diabetes mellitus. J Int Med Res. (2017) 45:1901–29. 10.1177/0300060516675504 PubMed DOI PMC

Xue W, Cai L, Tan Y, Thistlethwaite P, Kang YJ, Li X, et al. . Cardiac-specific overexpression of HIF-1{alpha} prevents deterioration of glycolytic pathway and cardiac remodeling in streptozotocin-induced diabetic mice. Am J Pathol. (2010) 177:97–105. 10.2353/ajpath.2010.091091 PubMed DOI PMC

Zhao FQ, Keating AF. Functional properties and genomics of glucose transporters. Curr Genomics (2007) 8:113–28. 10.2174/138920207780368187 PubMed DOI PMC

Roberts DJ, Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ. (2015) 22:248–57. 10.1038/cdd.2014.173 PubMed DOI PMC

Ye G, Donthi RV, Metreveli NS, Epstein PN. Overexpression of hexokinase protects hypoxic and diabetic cardiomyocytes by increasing ATP generation. Cardiovasc Toxicol. (2005) 5:293–300. 10.1385/CT:5:3:293 PubMed DOI

Bohuslavova R, Kolar F, Sedmera D, Skvorova L, Papousek F, Neckar J, et al. . Partial deficiency of HIF-1alpha stimulates pathological cardiac changes in streptozotocin-induced diabetic mice. BMC Endocr Disord. (2014) 14:11. 10.1186/1472-6823-14-11 PubMed DOI PMC

Lampe PD, Lau AF. Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys. (2000) 384:205–15. 10.1006/abbi.2000.2131 PubMed DOI

Soni S, Padwad YS. HIF-1 in cancer therapy: two decade long story of a transcription factor. Acta Oncol. (2017) 56:503–15. 10.1080/0284186X.2017.1301680 PubMed DOI

Botusan IR, Sunkari VG, Savu O, Catrina AI, Grunler J, Lindberg S, et al. . Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. Proc Natl Acad Sci USA. (2008) 105:19426–31. 10.1073/pnas.0805230105 PubMed DOI PMC

Yeh TL, Leissing TM, Abboud MI, Thinnes CC, Atasoylu O, Holt-Martyn JP, et al. . Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chem Sci. (2017) 8:7651–68. 10.1039/c7sc02103h PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace