Third-generation taxanes SB-T-121605 and SB-T-121606 are effective in pancreatic ductal adenocarcinoma
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38357661
PubMed Central
PMC10865389
DOI
10.1016/j.isci.2024.109044
PII: S2589-0042(24)00265-7
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer, Cell biology, Pharmacology,
- Publikační typ
- časopisecké články MeSH
Pancreatic cancer is a severe malignancy with increasing incidence and high mortality due to late diagnosis and low sensitivity to treatments. Search for the most appropriate drugs and therapeutic regimens is the most promising way to improve the treatment outcomes of the patients. This study aimed to compare (1) in vitro efficacy and (2) in vivo antitumor effects of conventional paclitaxel and the newly synthesized second (SB-T-1216) and third (SB-T-121605 and SB-T-121606) generation taxanes in KRAS wild type BxPC-3 and more aggressive KRAS G12V mutated Paca-44 pancreatic cancer cell line models. In vitro, paclitaxel efficacy was 27.6 ± 1.7 nM, while SB-Ts showed 1.7-7.4 times higher efficacy. Incorporation of SB-T-121605 and SB-T-121606 into in vivo therapeutic regimens containing paclitaxel was effective in suppressing tumor growth in Paca-44 tumor-bearing mice at small doses (≤3 mg/kg). SB-T-121605 and SB-T-121606 in combination with paclitaxel are promising candidates for the next phase of preclinical testing.
3rd Faculty of Medicine Charles University 100 00 Prague Czech Republic
Department of Pathology University Hospital Kralovske Vinohrady 100 00 Prague Czech Republic
Department of Surgery University Hospital Kralovske Vinohrady 100 00 Prague Czech Republic
Toxicogenomics Unit National Institute of Public Health 100 00 Prague Czech Republic
Zobrazit více v PubMed
Rahib L., Smith B.D., Aizenberg R., Rosenzweig A.B., Fleshman J.M., Matrisian L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the united states. Cancer Res. 2014;74:2913–2921. doi: 10.1158/0008-5472.CAN-14-0155. PubMed DOI
Boursi B., Finkelman B., Giantonio B.J., Haynes K., Rustgi A.K., Rhim A.D., Mamtani R., Yang Y.X. A Clinical Prediction Model to Assess Risk for Pancreatic Cancer Among Patients With New-Onset Diabetes. Gastroenterology. 2017;152:840–850.e3. doi: 10.1053/j.gastro.2016.11.046. PubMed DOI PMC
Carr R.M., Fernandez-Zapico M.E. Pancreatic cancer microenvironment, to target or not to target? EMBO Mol. Med. 2016;8:80–82. doi: 10.15252/emmm.201505948. PubMed DOI PMC
McGuigan A., Kelly P., Turkington R.C., Jones C., Coleman H.G., McCain R.S. Pancreatic Cancer: A Review of Clinical Diagnosis, Epidemiology, Treatment and Outcomes. World J. Gastroenterol. 2018;24:4846–4861. doi: 10.3748/wjg.v24.i43.4846. PubMed DOI PMC
GBD 2017 Pancreatic Cancer Collaborators The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. Gastroenterol. Hepatol. 2019;4:934–947. doi: 10.1016/S2468-1253(19)30347-4. PubMed DOI PMC
Waters A.M., Der C.J. KRAS: The critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb. Perspect. Med. 2018;8 doi: 10.1101/cshperspect.a031435. PubMed DOI PMC
Mizrahi J.D., Surana R., Valle J.W., Shroff R.T. Pancreatic cancer. Lancet. 2020;395:2008–2020. doi: 10.1016/S0140-6736(20)30974-0. PubMed DOI
Janssen Q.P., Van Dam J.L., Doppenberg D., Prakash L.R., Van Eijck C.H.J., Jarnagin W.R., O’ Reilly E.M., Paniccia A., Besselink M.G., Katz M.H.G., et al. FOLFIRINOX as Initial Treatment for Localized Pancreatic Adenocarcinoma: A Retrospective Analysis by the Trans-Atlantic Pancreatic Surgery Consortium. J. Natl. Cancer Inst. 2022;114:695–703. doi: 10.1093/jnci/djac018. PubMed DOI PMC
Rogers J.E., Mizrahi J.D., Xiao L., Mohindroo C., Shroff R.T., Wolff R., Varadhachary G.R., Javle M.M., Overman M., Fogelman D.R., et al. Modified gemcitabine plus nab-paclitaxel regimen in advanced pancreatic ductal adenocarcinoma. Cancer Med. 2020;9:5406–5415. doi: 10.1002/cam4.3229. PubMed DOI PMC
Alqahtani F.Y., Aleanizy F.S., El Tahir E., Alkahtani H.M., AlQuadeib B.T. Profiles of Drug Substances, Excipients and Related Methodology. Academic Press Inc; 2019. Paclitaxel; pp. 205–238. PubMed DOI
Ojima I., Das M. Recent advances in the chemistry and biology of new generation taxoids. J. Nat. Prod. 2009;72:554–565. doi: 10.1021/np8006556. PubMed DOI PMC
Mohelnikova-Duchonova B., Kocik M., Duchonova B., Brynychova V., Oliverius M., Hlavsa J., Honsova E., Mazanec J., Kala Z., Ojima I., et al. Hedgehog pathway overexpression in pancreatic cancer is abrogated by new-generation taxoid SB-T-1216. Pharmacogenomics J. 2017;17:452–460. doi: 10.1038/tpj.2016.55. PubMed DOI
Oliverius M., Flasarova D., Mohelnikova-Duchonova B., Ehrlichova M., Hlavac V., Kocik M., Strouhal O., Dvorak P., Ojima I., Soucek P. KRAS pathway expression changes in pancreatic cancer models by conventional and experimental taxanes. Mutagenesis. 2019;34:403–411. doi: 10.1093/mutage/gez021. PubMed DOI PMC
Seborova K., Koucka K., Spalenkova A., Holy P., Ehrlichova M., Sychra T., Chen L., Bendale H., Ojima I., Sandoval-Acuña C., et al. Anticancer regimens containing third generation taxanes SB-T-121605 and SB-T-121606 are highly effective in resistant ovarian carcinoma model. Front. Pharmacol. 2022;13 doi: 10.3389/fphar.2022.971905. PubMed DOI PMC
Geng F., Tang L., Li Y., Yang L., Choi K.S., Kazim A.L., Zhang Y. Allyl isothiocyanate arrests cancer cells in mitosis, and mitotic arrest in turn leads to apoptosis via Bcl-2 protein phosphorylation. J. Biol. Chem. 2011;286:32259–32267. doi: 10.1074/jbc.M111.278127. PubMed DOI PMC
Otová B., Ojima I., Václavíková R., Hrdý J., Ehrlichová M., Souček P., Vobořilová J., Němcová V., Zanardi I., Horský S., et al. Second-generation taxanes effectively suppress subcutaneous rat lymphoma: Role of disposition, transport, metabolism, in vitro potency and expression of angiogenesis genes. Invest. New Drugs. 2012;30:991–1002. doi: 10.1007/s10637-011-9654-0. PubMed DOI
Park W., Chawla A., O’Reilly E.M. Pancreatic Cancer: A Review. JAMA. 2021;326:851–862. doi: 10.1001/jama.2021.13027. PubMed DOI PMC
Pandey V., Storz P. Targeting the tumor microenvironment in pancreatic ductal adenocarcinoma. Expert Rev. Anticancer Ther. 2019;19:473–482. doi: 10.1080/14737140.2019.1622417. PubMed DOI PMC
Ehrlichova M., Vaclavikova R., Ojima I., Pepe A., Kuznetsova L.V., Chen J., Truksa J., Kovar J., Gut I. Transport and cytotoxicity of paclitaxel, docetaxel, and novel taxanes in human breast cancer cells. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2005;372:95–105. doi: 10.1007/s00210-005-1080-4. PubMed DOI
Buscail L., Bournet B., Cordelier P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nature Res. 2020;17:153–168. doi: 10.1038/s41575-019-0245-4. PubMed DOI
Hayashi A., Hong J., Iacobuzio-Donahue C.A. The pancreatic cancer genome revisited. Nature Res. 2021;18:469–481. doi: 10.1038/s41575-021-00463-z. PubMed DOI
Kemp S.B., Cheng N., Markosyan N., Sor R., Kim I.-K., Hallin J., Shoush J., Quinones L., Brown N.V., Bassett J.B., et al. Efficacy of a Small-Molecule Inhibitor of KrasG12D in Immunocompetent Models of Pancreatic Cancer. Cancer Discov. 2023;13:298–311. doi: 10.1158/2159-8290.CD-22-1066. PubMed DOI PMC
Matesanz R., Trigili C., Rodríguez-Salarichs J., Zanardi I., Pera B., Nogales A., Fang W.-S., Jímenez-Barbero J., Canales Á., Barasoain I., et al. Taxanes with high potency inducing tubulin assembly overcome tumoural cell resistances. Bioorg. Med. Chem. 2014;22:5078–5090. doi: 10.1016/j.bmc.2014.05.048. PubMed DOI
Ehrlichová M., Ojima I., Chen J., Václavíková R., Němcová-Fürstová V., Vobořilová J., Šimek P., Horský S., Souček P., Kovář J., et al. Transport, metabolism, cytotoxicity and effects of novel taxanes on the cell cycle in MDA-MB-435 and NCI/ADR-RES cells. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2012;385:1035–1048. doi: 10.1007/s00210-012-0785-4. PubMed DOI
Botchkina G.I., Zuniga E.S., Das M., Wang Y., Wang H., Zhu S., Savitt A.G., Rowehl R.A., Leyfman Y., Ju J., et al. New-generation taxoid SB-T-1214 inhibits stem cell-related gene expression in 3D cancer spheroids induced by purified colon tumor-initiating cells. Mol. Cancer. 2010;9:192. doi: 10.1186/1476-4598-9-192. PubMed DOI PMC
Ahmad G., Mackenzie G.G., Egan J., Amiji M.M. DHA-SBT-1214 Taxoid Nanoemulsion and Anti–PD-L1 Antibody Combination Therapy Enhances Antitumor Efficacy in a Syngeneic Pancreatic Adenocarcinoma Model. Mol. Cancer Ther. 2019;18:1961–1972. doi: 10.1158/1535-7163.MCT-18-1046. PubMed DOI PMC
Ojima I., Chen J., Sun L., Borella C.P., Wang T., Miller M.L., Lin S., Geng X., Kuznetsova L., Qu C., et al. Design, synthesis, and biological evaluation of new-generation taxoids. J. Med. Chem. 2008;51:3203–3221. doi: 10.1021/jm800086e. PubMed DOI PMC
Seitz J.D., Wang T., Vineberg J.G., Honda T., Ojima I. Synthesis of a Next-Generation Taxoid by Rapid Methylation Amenable for 11C-Labeling. J. Org. Chem. 2018;83:2847–2857. doi: 10.1021/acs.joc.7b03284. PubMed DOI
Seitz J.D., Vineberg J.G., Herlihy E., Park B., Melief E., Ojima I. Design, synthesis and biological evaluation of a highly-potent and cancer cell selective folate-taxoid conjugate. Bioorg. Med. Chem. 2015;23:2187–2194. doi: 10.1016/j.bmc.2015.02.057. PubMed DOI PMC
Sychra T., Václavíková R., Szabó A., Spálenková A., Šeborová K., Balatka Š., Tesařová T., Kočí K., Gürlich R., Souček P., Oliverius M. Introducing in vivo pancreatic cancer models for the study of new therapeutic regimens. Rozhl. Chir. 2022;101:584–592. doi: 10.33699/PIS.2022.101.12.584-592. PubMed DOI