• This record comes from PubMed

Insight Into the Dynamics of the Ixodes ricinus Nymphal Midgut Proteome

. 2023 Nov ; 22 (11) : 100663. [epub] 20231012

Language English Country United States Media print-electronic

Document type Journal Article

Links

PubMed 37832788
PubMed Central PMC10665701
DOI 10.1016/j.mcpro.2023.100663
PII: S1535-9476(23)00174-3
Knihovny.cz E-resources

Ticks are ectoparasites that feed on blood and have an impressive ability to consume and process enormous amounts of host blood, allowing extremely long periods of starvation between blood meals. The central role in the parasitic lifestyle of ticks is played by the midgut. This organ efficiently stores and digests ingested blood and serves as the primary interface for the transmission of tick-borne pathogens. In this study, we used a label-free quantitative approach to perform a novel dynamic proteomic analysis of the midgut of Ixodesricinus nymphs, covering their development from unfed to pre-molt stages. We identified 1534 I. ricinus-specific proteins with a relatively low proportion of host proteins. This proteome dataset, which was carefully examined by manual scrutiny, allowed precise annotation of proteins important for blood meal processing and their dynamic changes during nymphal ontogeny. We focused on midgut molecules related to lipid hydrolysis, storage, and transport, opening a yet unexplored avenue for studying lipid metabolism in ticks. Further dynamic profiling of the tick's multi-enzyme digestive network, protease inhibitors, enzymes involved in redox homeostasis and detoxification, antimicrobial peptides, and proteins responsible for midgut colonization by Borrelia spirochetes promises to uncover new targets for targeting tick nymphs, the most critical life stage for transmission the pathogens that cause tick-borne diseases.

See more in PubMed

de la Fuente J., Estrada-Pena A., Venzal J.M., Kocan K.M., Sonenshine D.E. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 2008;13:6938–6946. PubMed

Mans B.J., de Castro M.H., Pienaar R., de Klerk D., Gaven P., Genu S., et al. Ancestral reconstruction of tick lineages. Ticks Tick Borne Dis. 2016;7:509–535. PubMed

Kaufman W.R. Gluttony and sex in female ixodid ticks: how do they compare to other blood-sucking arthropods? J. Insect Physiol. 2007;53:264–273. PubMed

Sonenshine D.E., Roe R.M. Biology of Ticks. 2nd Ed. Oxford University Press; New York, NY: 2014.

Kurokawa C., Lynn G.E., Pedra J.H.F., Pal U., Narasimhan S., Fikrig E. Interactions between Borrelia burgdorferi and ticks. Nat. Rev. Microbiol. 2020;18:587–600. PubMed PMC

Pal U., Kitsou C., Drecktrah D., Yas O.B., Fikrig E. Interactions between ticks and Lyme disease spirochetes. Curr. Issues Mol. Biol. 2021;42:113–144. PubMed PMC

Hajdusek O., Sima R., Ayllon N., Jalovecka M., Perner J., de la Fuente J., et al. Interaction of the tick immune system with transmitted pathogens. Front. Cell Infect. Microbiol. 2013;3:26. PubMed PMC

Franta Z., Frantova H., Konvickova J., Horn M., Sojka D., Mares M., et al. Dynamics of digestive proteolytic system during blood feeding of the hard tick Ixodes ricinus. Parasit Vectors. 2010;3:119. PubMed PMC

Sojka D., Franta Z., Horn M., Caffrey C.R., Mares M., Kopacek P. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 2013;29:276–285. PubMed

Sojka D., Franta Z., Horn M., Hajdusek O., Caffrey C.R., Mares M., et al. Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasite Vector. 2008;1:7. PubMed PMC

Chmelar J., Kotal J., Karim S., Kopacek P., Francischetti I.M.B., Pedra J.H.F., et al. Sialomes and mialomes: a systems-biology view of tick tissues and tick-host interactions. Trends Parasitol. 2016;32:242–254. PubMed PMC

Schwarz A., Tenzer S., Hackenberg M., Erhart J., Gerhold-Ay A., Mazur J., et al. A systems level analysis reveals transcriptomic and proteomic complexity in Ixodes ricinus midgut and salivary glands during early attachment and feeding. Mol. Cell Proteomics. 2014;13:2725–2735. PubMed PMC

Kotsyfakis M., Schwarz A., Erhart J., Ribeiro J.M. Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host. Sci. Rep. 2015;5:9103. PubMed PMC

Perner J., Kropackova S., Kopacek P., Ribeiro J.M.C. Sialome diversity of ticks revealed by RNAseq of single tick salivary glands. PLoS Negl. Trop. Dis. 2018;12 PubMed PMC

Medina J.M., Jmel M.A., Cuveele B., Gomez-Martin C., Aparicio-Puerta E., Mekki I., et al. Transcriptomic analysis of the tick midgut and salivary gland responses upon repeated blood-feeding on a vertebrate host. Front. Cell Infect. Microbiol. 2022;12 PubMed PMC

Perner J., Provaznik J., Schrenkova J., Urbanova V., Ribeiro J.M., Kopacek P. RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks. Sci. Rep. 2016;6 PubMed PMC

Mahmood S., Sima R., Urbanova V., Trentelman J.J.A., Krezdorn N., Winter P., et al. Identification of tick Ixodes ricinus midgut genes differentially expressed during the transmission of Borrelia afzelii spirochetes using a transcriptomic approach. Front. Immunol. 2020;11 PubMed PMC

Charrier N.P., Couton M., Voordouw M.J., Rais O., Durand-Hermouet A., Hervet C., et al. Whole body transcriptomes and new insights into the biology of the tick Ixodes ricinus. Parasit. Vectors. 2018;11:364. PubMed PMC

Vechtova P., Fussy Z., Cegan R., Sterba J., Erhart J., Benes V., et al. Catalogue of stage-specific transcripts in Ixodes ricinus and their potential functions during the tick life-cycle. Parasit. Vectors. 2020;13:311. PubMed PMC

Zhu H., Bilgin M., Snyder M. Proteomics. Annu. Rev. Biochem. 2003;72:783–812. PubMed

Manzoni C., Kia D.A., Vandrovcova J., Hardy J., Wood N.W., Lewis P.A., et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinform. 2018;19:286–302. PubMed PMC

Bensaoud C., Tenzer S., Poplawski A., Medina J.M., Jmel M.A., Voet H., et al. Quantitative proteomics analysis reveals core and variable tick salivary proteins at the tick-vertebrate host interface. Mol. Ecol. 2022;31:4162–4175. PubMed

De Silva A.M., Fikrig E. Growth and migration of Borrelia burgdorferi in Ixodes ticks during blood feeding. Am. J. Trop. Med. Hyg. 1995;53:397–404. PubMed

Pospisilova T., Urbanova V., Hes O., Kopacek P., Hajdusek O., Sima R. Tracking of Borrelia afzelii transmission from infected Ixodes ricinus nymphs to mice. Infect. Immun. 2019;87 PubMed PMC

Rappsilber J., Mann M., Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007;2:1896–1906. PubMed

Forinova M., Pilipenco A., Visova I., Lynn N.S., Jr., Dostalek J., Maskova H., et al. Functionalized terpolymer-brush-based biointerface with improved antifouling properties for ultra-sensitive direct detection of virus in crude clinical samples. ACS Appl. Mater. Inter. 2021;13:60612–60624. PubMed

Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. PubMed

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. PubMed

Gotz S., Garcia-Gomez J.M., Terol J., Williams T.D., Nagaraj S.H., Nueda M.J., et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36:3420–3435. PubMed PMC

Klopfenstein D.V., Zhang L., Pedersen B.S., Ramirez F., Warwick Vesztrocy A., Naldi A., et al. GOATOOLS: a Python library for Gene Ontology analyses. Sci. Rep. 2018;8 PubMed PMC

Conesa A., Gotz S., Garcia-Gomez J.M., Terol J., Talon M., Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–3676. PubMed

Dusbabek F. Nymphal sexual dimorphism in the sheep tick Ixodes ricinus (Acari: ixodidae) Folia Parasitol. (Praha) 1996;43:75–79. PubMed

Inohara N., Nunez G. ML -- a conserved domain involved in innate immunity and lipid metabolism. Trends Biochem. Sci. 2002;27:219–221. PubMed

Citelli M., Lara F.A., da Silva Vaz I., Jr., Oliveira P.L. Oxidative stress impairs heme detoxification in the midgut of the cattle tick, Rhipicephalus (Boophilus) microplus. Mol. Biochem. Parasitol. 2007;151:81–88. PubMed

Lu S., Martins L.A., Kotal J., Ribeiro J.M.C., Tirloni L. A longitudinal transcriptomic analysis from unfed to post-engorgement midguts of adult female Ixodes scapularis. Sci. Rep. 2023;13 PubMed PMC

Canavoso L.E., Jouni Z.E., Karnas K.J., Pennington J.E., Wells M.A. Fat metabolism in insects. Annu. Rev. Nutr. 2001;21:23–46. PubMed

Toprak U., Hegedus D., Dogan C., Guney G. A journey into the world of insect lipid metabolism. Arch. Insect Biochem. Physiol. 2020;104 PubMed

O'Neal A.J., Butler L.R., Rolandelli A., Gilk S.D., Pedra J.H. Lipid hijacking: a unifying theme in vector-borne diseases. Elife. 2020;9:e61675. PubMed PMC

Clark A.J., Block K. The absence of sterol synthesis in insects. J. Biol. Chem. 1959;234:2578–2582. PubMed

Jing X., Behmer S.T. Insect sterol nutrition: physiological mechanisms, ecology, and applications. Annu. Rev. Entomol. 2020;65:251–271. PubMed

Ogihara M.H., Hikiba J., Suzuki Y., Taylor D., Kataoka H. Ovarian ecdysteroidogenesis in both immature and mature stages of an Acari, Ornithodoros moubata. PLoS One. 2015;10 PubMed PMC

Qu Z., Kenny N.J., Lam H.M., Chan T.F., Chu K.H., Bendena W.G., et al. How did arthropod sesquiterpenoids and ecdysteroids arise? Comparison of hormonal pathway genes in noninsect arthropod genomes. Genome Biol. Evol. 2015;7:1951–1959. PubMed PMC

Gondim K.C., Atella G.C., Pontes E.G., Majerowicz D. Lipid metabolism in insect disease vectors. Insect Biochem. Mol. Biol. 2018;101:108–123. PubMed

Rosendale A.J., Dunlevy M.E., McCue M.D., Benoit J.B. Progressive behavioural, physiological and transcriptomic shifts over the course of prolonged starvation in ticks. Mol. Ecol. 2019;28:49–65. PubMed

Abdullah S., Davies S., Wall R. Spectrophotometric analysis of lipid used to examine the phenology of the tick Ixodes ricinus. Parasit Vectors. 2018;11:523. PubMed PMC

Randolph S.E., Green R.M., Hoodless A.N., Peacey M.F. An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus. Int. J. Parasitol. 2002;32:979–989. PubMed

Wilton D.C., Waite M. In: New Comprehensive Biochemistry. Vance D.E., Vance J.E., editors. Elsevier; Amsterdam: 2002. Chapter 11 phospholipases; pp. 291–314.

Zhang D., Du G. In: Biochemistry of Lipids, Lipoproteins and Membranes. 7th Ed. Ridgway N.D., McLeod R.S., editors. Elsevier; Amsterdam: 2021. Chapter 8 - phospholipid catabolism; pp. 259–280.

Wong H., Schotz M.C. The lipase gene family. J. Lipid Res. 2002;43:993–999. PubMed

Holmquist M. Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms. Curr. Protein Pept. Sci. 2000;1:209–235. PubMed

Hannun Y.A., Obeid L.M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 2008;9:139–150. PubMed

Hiraiwa M., Martin B.M., Kishimoto Y., Conner G.E., Tsuji S., O'Brien J.S. Lysosomal proteolysis of prosaposin, the precursor of saposins (sphingolipid activator proteins): its mechanism and inhibition by ganglioside. Arch. Biochem. Biophys. 1997;341:17–24. PubMed

Vaccaro A.M., Salvioli R., Tatti M., Ciaffoni F. Saposins and their interaction with lipids. Neurochem. Res. 1999;24:307–314. PubMed

Kishimoto Y., Hiraiwa M., O'Brien J.S. Saposins: structure, function, distribution, and molecular genetics. J. Lipid Res. 1992;33:1255–1267. PubMed

O'Brien J.S., Kishimoto Y. Saposin proteins: structure, function, and role in human lysosomal storage disorders. FASEB J. 1991;5:301–308. PubMed

Hindle S.J., Hebbar S., Schwudke D., Elliott C.J.H., Sweeney S.T. A saposin deficiency model in Drosophila: lysosomal storage, progressive neurodegeneration and sensory physiological decline. Neurobiol. Dis. 2017;98:77–87. PubMed PMC

Sellin J., Schulze H., Paradis M., Gosejacob D., Papan C., Shevchenko A., et al. Characterization of Drosophila Saposin-related mutants as a model for lysosomal sphingolipid storage diseases. Dis. Model Mech. 2017;10:737–750. PubMed PMC

Brasaemle D.L. Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J. Lipid Res. 2007;48:2547–2559. PubMed

Beller M., Bulankina A.V., Hsiao H.H., Urlaub H., Jackle H., Kuhnlein R.P. PERILIPIN-dependent control of lipid droplet structure and fat storage in Drosophila. Cell Metab. 2010;12:521–532. PubMed

Li X., Saha P., Li J., Blobel G., Pfeffer S.R. Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2. Proc. Natl. Acad. Sci. U. S. A. 2016;113:10079–10084. PubMed PMC

Trinh M.N., Brown M.S., Seemann J., Goldstein J.L., Lu F. Lysosomal cholesterol export reconstituted from fragments of Niemann-Pick C1. Elife. 2018;7:e38564. PubMed PMC

Deffieu M.S., Pfeffer S.R. Niemann-Pick type C 1 function requires lumenal domain residues that mediate cholesterol-dependent NPC2 binding. Proc. Natl. Acad. Sci. U. S. A. 2011;108:18932–18936. PubMed PMC

Thomas W.R., Smith W. House-dust-mite allergens. Allergy. 1998;53:821–832. PubMed

Reginald K., Chew F.T. The major allergen Der p 2 is a cholesterol binding protein. Sci. Rep. 2019;9:1556. PubMed PMC

Taylor F.R., Saucier S.E., Shown E.P., Parish E.J., Kandutsch A.A. Correlation between oxysterol binding to a cytosolic binding protein and potency in the repression of hydroxymethylglutaryl coenzyme A reductase. J. Biol. Chem. 1984;259:12382–12387. PubMed

Vihervaara T., Jansen M., Uronen R.L., Ohsaki Y., Ikonen E., Olkkonen V.M. Cytoplasmic oxysterol-binding proteins: sterol sensors or transporters? Chem. Phys. Lipids. 2011;164:443–450. PubMed

Weber-Boyvat M., Zhong W., Yan D., Olkkonen V.M. Oxysterol-binding proteins: functions in cell regulation beyond lipid metabolism. Biochem. Pharmacol. 2013;86:89–95. PubMed

Hynynen R., Suchanek M., Spandl J., Back N., Thiele C., Olkkonen V.M. OSBP-related protein 2 is a sterol receptor on lipid droplets that regulates the metabolism of neutral lipids. J. Lipid Res. 2009;50:1305–1315. PubMed PMC

Beh C.T., Rine J. A role for yeast oxysterol-binding protein homologs in endocytosis and in the maintenance of intracellular sterol-lipid distribution. J. Cell Sci. 2004;117:2983–2996. PubMed

Fu Q., Lynn-Miller A., Lan Q. Characterization of the oxysterol-binding protein gene family in the yellow fever mosquito, Aedes aegypti. Insect Mol. Biol. 2011;20:541–552. PubMed PMC

Maya-Monteiro C.M., Daffre S., Logullo C., Lara F.A., Alves E.W., Capurro M.L., et al. HeLp, a heme lipoprotein from the hemolymph of the cattle tick, Boophilus microplus. J. Biol. Chem. 2000;275:36584–36589. PubMed

Perner J., Sobotka R., Sima R., Konvickova J., Sojka D., Oliveira P.L., et al. Acquisition of exogenous haem is essential for tick reproduction. Elife. 2016;5 PubMed PMC

Smolenaars M.M., Madsen O., Rodenburg K.W., Van der Horst D.J. Molecular diversity and evolution of the large lipid transfer protein superfamily. J. Lipid Res. 2007;48:489–502. PubMed

Horn M., Nussbaumerova M., Sanda M., Kovarova Z., Srba J., Franta Z., et al. Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chem. Biol. 2009;16:1053–1063. PubMed PMC

Sojka D., Pytelkova J., Perner J., Horn M., Konvickova J., Schrenkova J., et al. Multienzyme degradation of host serum albumin in ticks. Ticks Tick Borne Dis. 2016;7:604–613. PubMed

Sojka D., Franta Z., Frantova H., Bartosova P., Horn M., Vachova J., et al. Characterization of gut-associated cathepsin D hemoglobinase from tick Ixodes ricinus (IrCD1) J. Biol. Chem. 2012;287:21152–21163. PubMed PMC

Cruz C.E., Fogaca A.C., Nakayasu E.S., Angeli C.B., Belmonte R., Almeida I.C., et al. Characterization of proteinases from the midgut of Rhipicephalus (Boophilus) microplus involved in the generation of antimicrobial peptides. Parasit Vectors. 2010;3:63. PubMed PMC

Fogaca A.C., da Silva P.I., Jr., Miranda M.T., Bianchi A.G., Miranda A., Ribolla P.E., et al. Antimicrobial activity of a bovine hemoglobin fragment in the tick Boophilus microplus. J. Biol. Chem. 1999;274:25330–25334. PubMed

Tsuji N., Miyoshi T., Battsetseg B., Matsuo T., Xuan X., Fujisaki K. A cysteine protease is critical for Babesia spp. transmission in Haemaphysalis ticks. PLoS Pathog. 2008;4 PubMed PMC

Sojka D., Hajdusek O., Dvorak J., Sajid M., Franta Z., Schneider E.L., et al. IrAE - an asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int. J. Parasitol. 2007;37:713–724. PubMed PMC

Hartmann D., Sima R., Konvickova J., Perner J., Kopacek P., Sojka D. Multiple legumain isoenzymes in ticks. Int. J. Parasitol. 2018;48:167–178. PubMed

Hatta T., Kazama K., Miyoshi T., Umemiya R., Liao M., Inoue N., et al. Identification and characterisation of a leucine aminopeptidase from the hard tick Haemaphysalis longicornis. Int. J. Parasitol. 2006;36:1123–1132. PubMed

Motobu M., Tsuji N., Miyoshi T., Huang X., Islam M.K., Alim M.A., et al. Molecular characterization of a blood-induced serine carboxypeptidase from the ixodid tick Haemaphysalis longicornis. FEBS J. 2007;274:3299–3312. PubMed

Hatta T., Tsuji N., Miyoshi T., Islam M.K., Alim M.A., Yamaji K., et al. Leucine aminopeptidase, HlLAP, from the ixodid tick Haemaphysalis longicornis, plays vital roles in the development of oocytes. Parasitol. Int. 2010;59:286–289. PubMed

Miyoshi T., Tsuji N., Islam M.K., Kamio T., Fujisaki K. Cloning and molecular characterization of a cubilin-related serine proteinase from the hard tick Haemaphysalis longicornis. Insect Biochem. Mol. Biol. 2004;34:799–808. PubMed

Miyoshi T., Tsuji N., Islam M.K., Huang X., Motobu M., Alim M.A., et al. Molecular and reverse genetic characterization of serine proteinase-induced hemolysis in the midgut of the ixodid tick Haemaphysalis longicornis. J. Insect Physiol. 2007;53:195–203. PubMed

Dorrah M., Bensaoud C., Mohamed A.A., Sojka D., Bassal T.T.M., Kotsyfakis M. Comparison of the hemolysis machinery in two evolutionarily distant blood-feeding arthropod vectors of human diseases. PLoS Negl. Trop. Dis. 2021;15 PubMed PMC

Goptar I.A., Shagin D.A., Shagina I.A., Mudrik E.S., Smirnova Y.A., Zhuzhikov D.P., et al. A digestive prolyl carboxypeptidase in Tenebrio molitor larvae. Insect Biochem. Mol. Biol. 2013;43:501–509. PubMed

Lai R., Takeuchi H., Lomas L.O., Jonczy J., Rigden D.J., Rees H.H., et al. A new type of antimicrobial protein with multiple histidines from the hard tick, Amblyomma hebraeum. FASEB J. 2004;18:1447–1449. PubMed

Zupanic N., Pocic J., Leonardi A., Sribar J., Kordis D., Krizaj I. Serine pseudoproteases in physiology and disease. FEBS J. 2023;290:2263–2278. PubMed

Wu J., Zhou X., Chen Q., Chen Z., Zhang J., Yang L., et al. Defensins as a promising class of tick antimicrobial peptides: a scoping review. Infect. Dis. Poverty. 2022;11:71. PubMed PMC

Rawlings N.D., Barrett A.J., Thomas P.D., Huang X., Bateman A., Finn R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624–D632. PubMed PMC

Turk V., Stoka V., Turk D. Cystatins: biochemical and structural properties, and medical relevance. Front. Biosci. 2008;13:5406–5420. PubMed

Turk V., Bode W. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. 1991;285:213–219. PubMed

Kotsyfakis M., Sa-Nunes A., Francischetti I.M., Mather T.N., Andersen J.F., Ribeiro J.M. Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J. Biol. Chem. 2006;281:26298–26307. PubMed

Kotsyfakis M., Karim S., Andersen J.F., Mather T.N., Ribeiro J.M. Selective cysteine protease inhibition contributes to blood-feeding success of the tick Ixodes scapularis. J. Biol. Chem. 2007;282:29256–29263. PubMed

Kotál J., Buša M., Urbanová V., Řezačová P., Chmelař J., Langhansová H., et al. Mialostatin, a novel midgut cystatin from Ixodes ricinus ticks: crystal structure and regulation of host blood digestion. Int. J. Mol. Sci. 2021;22:5371. PubMed PMC

Kotál J., Stergiou N., Buša M., Chlastáková A., Beránková Z., Řezáčová P., et al. The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin. Cell Mol. Life Sci. 2019;76:2003–2013. PubMed PMC

Mihelič M., Turk D. Two decades of thyroglobulin type-1 domain research. Biol. Chem. 2007;388:1123–1130. PubMed

Porter L.M., Radulovič Z.M., Mulenga A. A repertoire of protease inhibitor families in Amblyomma americanum and other tick species: inter-species comparative analyses. Parasit. Vectors. 2017;10:152. PubMed PMC

Kaščáková B., Kotál J., Martins L.A., Beránková Z., Langhansová H., Calvo E., et al. Structural and biochemical characterization of the novel serpin Iripin-5 from Ixodes ricinus. Acta Crystallogr. D Struct. Biol. 2021;77:1183–1196. PubMed PMC

Prevot P.P., Adam B., Boudjeltia K.Z., Brossard M., Lins L., Cauchie P., et al. Anti-hemostatic effects of a serpin from the saliva of the tick Ixodes ricinus. J. Biol. Chem. 2006;281:26361–26369. PubMed

Prevot P.P., Couvreur B., Denis V., Brossard M., Vanhamme L., Godfroid E. Protective immunity against Ixodes ricinus induced by a salivary serpin. Vaccine. 2007;25:3284–3292. PubMed

Abbas M.N., Chlastáková A., Jmel M.A., Iliaki-Giannakoudaki E., Chmelař J., Kotsyfakis M. Serpins in tick physiology and tick-host interaction. Front. Cell Infect. Microbiol. 2022;12 PubMed PMC

Fogaca A.C., Almeida I.C., Eberlin M.N., Tanaka A.S., Bulet P., Daffre S. Ixodidin, a novel antimicrobial peptide from the hemocytes of the cattle tick Boophilus microplus with inhibitory activity against serine proteinases. Peptides. 2006;27:667–674. PubMed

Sasaki S.D., de Lima C.A., Lovato D.V., Juliano M.A., Torquato R.J., Tanaka A.S. BmSI-7, a novel subtilisin inhibitor from Boophilus microplus, with activity toward Pr1 proteases from the fungus Metarhizium anisopliae. Exp. Parasitol. 2008;118:214–220. PubMed

Chmelař J., Calvo E., Pedra J.H., Francischetti I.M., Kotsyfakis M. Tick salivary secretion as a source of antihemostatics. J. Proteomics. 2012;75:3842–3854. PubMed PMC

Macedo-Ribeiro S., Almeida C., Calisto B.M., Friedrich T., Mentele R., Sturzebecher J., et al. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick. PLoS One. 2008;3:e1624. PubMed PMC

Narasimhan S., Sukumaran B., Bozdogan U., Thomas V., Liang X., DePonte K., et al. A tick antioxidant facilitates the Lyme disease agent's successful migration from the mammalian host to the arthropod vector. Cell Host Microbe. 2007;2:7–18. PubMed PMC

Das S., Banerjee G., DePonte K., Marcantonio N., Kantor F.S., Fikrig E. Salp25D, an Ixodes scapularis antioxidant, is 1 of 14 immunodominant antigens in engorged tick salivary glands. J. Infect. Dis. 2001;184:1056–1064. PubMed

De S., Kingan S.B., Kitsou C., Portik D.M., Foor S.D., Frederick J.C., et al. A high-quality Ixodes scapularis genome advances tick science. Nat. Genet. 2023;55:301–311. PubMed

Tripathi T., Chetri P.B. Potent inhibitors of thioredoxin glutathione reductase: grail of anti-schistosome drug within reach? ACS Infect. Dis. 2020;6:893–895. PubMed

Reddy B.P., Prasad G.B., Raghavendra K. In silico analysis of glutathione S-transferase supergene family revealed hitherto unreported insect specific delta- and epsilon-GSTs and mammalian specific mu-GSTs in Ixodes scapularis (Acari: ixodidae) Comput. Biol. Chem. 2011;35:114–120. PubMed

Perner J., Kotal J., Hatalova T., Urbanova V., Bartosova-Sojkova P., Brophy P.M., et al. Inducible glutathione S-transferase (IrGST1) from the tick Ixodes ricinus is a haem-binding protein. Insect Biochem. Mol. Biol. 2018;95:44–54. PubMed

Ndawula C., Jr., Amaral Xavier M., Villavicencio B., Cortez Lopes F., Juliano M.A., Parizi L.F., et al. Prediction, mapping and validation of tick glutathione S-transferase B-cell epitopes. Ticks Tick Borne Dis. 2020;11 PubMed

Ozelame K.P.C., Mattia M.M.C., Dedavid E.S.L.A., Randall L.M., Corvo I., Saporiti T., et al. Novel tick glutathione transferase inhibitors as promising acaricidal compounds. Ticks Tick Borne Dis. 2022;13 PubMed

Gulia-Nuss M., Nuss A.B., Meyer J.M., Sonenshine D.E., Roe R.M., Waterhouse R.M., et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 2016;7 PubMed PMC

Pichu S., Yalcin E.B., Ribeiro J.M., King R.S., Mather T.N. Molecular characterization of novel sulfotransferases from the tick, Ixodes scapularis. BMC Biochem. 2011;12:32. PubMed PMC

Yalcin E.B., Stangl H., Pichu S., Mather T.N., King R.S. Monoamine neurotransmitters as substrates for novel tick sulfotransferases, homology modeling, molecular docking, and enzyme kinetics. ACS Chem. Biol. 2011;6:176–184. PubMed PMC

Guizzo M.G., Neupane S., Kucera M., Perner J., Frantova H., da Silva Vaz I., et al. Poor unstable midgut microbiome of hard ticks contrasts with abundant and stable monospecific microbiome in ovaries. Front. Cell Infect. Microbiol. 2020;10:211. PubMed PMC

Guizzo M.G., Dolezelikova K., Neupane S., Frantova H., Hrbatova A., Pafco B., et al. Characterization and manipulation of the bacterial community in the midgut of Ixodes ricinus. Parasit Vectors. 2022;15:248. PubMed PMC

Fogaca A.C., Sousa G., Pavanelo D.B., Esteves E., Martins L.A., Urbanova V., et al. Tick immune system: what is known, the interconnections, the gaps, and the challenges. Front. Immunol. 2021;12 PubMed PMC

Chrudimska T., Slaninova J., Rudenko N., Ruzek D., Grubhoffer L. Functional characterization of two defensin isoforms of the hard tick Ixodes ricinus. Parasit Vectors. 2011;4:63. PubMed PMC

Tonk M., Cabezas-Cruz A., Valdes J.J., Rego R.O., Rudenko N., Golovchenko M., et al. Identification and partial characterisation of new members of the Ixodes ricinus defensin family. Gene. 2014;540:146–152. PubMed

Fogaca A.C., Lorenzini D.M., Kaku L.M., Esteves E., Bulet P., Daffre S. Cysteine-rich antimicrobial peptides of the cattle tick Boophilus microplus: isolation, structural characterization and tissue expression profile. Dev. Comp. Immunol. 2004;28:191–200. PubMed

Silva F.D., Rezende C.A., Rossi D.C., Esteves E., Dyszy F.H., Schreier S., et al. Structure and mode of action of microplusin, a copper II-chelating antimicrobial peptide from the cattle tick Rhipicephalus (Boophilus) microplus. J. Biol. Chem. 2009;284:34735–34746. PubMed PMC

Chou S., Daugherty M.D., Peterson S.B., Biboy J., Yang Y., Jutras B.L., et al. Transferred interbacterial antagonism genes augment eukaryotic innate immune function. Nature. 2015;518:98–101. PubMed PMC

Hayes B.M., Radkov A.D., Yarza F., Flores S., Kim J., Zhao Z., et al. Ticks resist skin commensals with immune factor of bacterial origin. Cell. 2020;183:1562–1571.e1512. PubMed PMC

Hegedus D., Erlandson M., Gillott C., Toprak U. New insights into peritrophic matrix synthesis, architecture, and function. Annu. Rev. Entomol. 2009;54:285–302. PubMed

Narasimhan S., Rajeevan N., Liu L., Zhao Y.O., Heisig J., Pan J., et al. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host Microbe. 2014;15:58–71. PubMed PMC

Radolf J.D., Caimano M.J., Stevenson B., Hu L.T. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 2012;10:87–99. PubMed PMC

Liu X., Cooper A.M.W., Zhang J., Zhu K.Y. Biosynthesis, modifications and degradation of chitin in the formation and turnover of peritrophic matrix in insects. J. Insect Physiol. 2019;114:109–115. PubMed

Helble J.D., McCarthy J.E., Hu L.T. Interactions between Borrelia burgdorferi and its hosts across the enzootic cycle. Parasite Immunol. 2021;43 PubMed PMC

DeHart T.G., Kushelman M.R., Hildreth S.B., Helm R.F., Jutras B.L. The unusual cell wall of the Lyme disease spirochaete Borrelia burgdorferi is shaped by a tick sugar. Nat. Microbiol. 2021;6:1583–1592. PubMed PMC

Kariu T., Smith A., Yang X., Pal U. A chitin deacetylase-like protein is a predominant constituent of tick peritrophic membrane that influences the persistence of Lyme disease pathogens within the vector. PLoS One. 2013;8 PubMed PMC

Yang X., Koci J., Smith A.A., Zhuang X., Sharma K., Dutta S., et al. A novel tick protein supports integrity of gut peritrophic matrix impacting existence of gut microbiome and Lyme disease pathogens. Cell Microbiol. 2021;23 PubMed PMC

Abraham N.M., Liu L., Jutras B.L., Yadav A.K., Narasimhan S., Gopalakrishnan V., et al. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc. Natl. Acad. Sci. U. S. A. 2017;114:E781–E790. PubMed PMC

Narasimhan S., Schuijt T.J., Abraham N.M., Rajeevan N., Coumou J., Graham M., et al. Modulation of the tick gut milieu by a secreted tick protein favors Borrelia burgdorferi colonization. Nat. Commun. 2017;8:184. PubMed PMC

Perner J., Gasser R.B., Oliveira P.L., Kopacek P. Haem biology in metazoan parasites - 'the bright side of haem'. Trends Parasitol. 2019;35:213–225. PubMed

Ruiz-May E., Alvarez-Sanchez M.E., Aguilar-Tipacamu G., Elizalde-Contreras J.M., Bojorquez-Velazquez E., Zamora-Briseno J.A., et al. Comparative proteome analysis of the midgut of Rhipicephalus microplus (Acari: Ixodidae) strains with contrasting resistance to ivermectin reveals the activation of proteins involved in the detoxification metabolism. J. Proteomics. 2022;263:104618. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...