Insight Into the Dynamics of the Ixodes ricinus Nymphal Midgut Proteome
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
37832788
PubMed Central
PMC10665701
DOI
10.1016/j.mcpro.2023.100663
PII: S1535-9476(23)00174-3
Knihovny.cz E-resources
- Keywords
- Borrelia, Ixodes, antimicrobial peptides, label-free quantification, lipid metabolism, midgut, protease inhibitors, proteases, proteome, ticks,
- MeSH
- Ixodes * parasitology MeSH
- Proteome MeSH
- Proteomics MeSH
- Digestive System MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Proteome MeSH
Ticks are ectoparasites that feed on blood and have an impressive ability to consume and process enormous amounts of host blood, allowing extremely long periods of starvation between blood meals. The central role in the parasitic lifestyle of ticks is played by the midgut. This organ efficiently stores and digests ingested blood and serves as the primary interface for the transmission of tick-borne pathogens. In this study, we used a label-free quantitative approach to perform a novel dynamic proteomic analysis of the midgut of Ixodesricinus nymphs, covering their development from unfed to pre-molt stages. We identified 1534 I. ricinus-specific proteins with a relatively low proportion of host proteins. This proteome dataset, which was carefully examined by manual scrutiny, allowed precise annotation of proteins important for blood meal processing and their dynamic changes during nymphal ontogeny. We focused on midgut molecules related to lipid hydrolysis, storage, and transport, opening a yet unexplored avenue for studying lipid metabolism in ticks. Further dynamic profiling of the tick's multi-enzyme digestive network, protease inhibitors, enzymes involved in redox homeostasis and detoxification, antimicrobial peptides, and proteins responsible for midgut colonization by Borrelia spirochetes promises to uncover new targets for targeting tick nymphs, the most critical life stage for transmission the pathogens that cause tick-borne diseases.
See more in PubMed
de la Fuente J., Estrada-Pena A., Venzal J.M., Kocan K.M., Sonenshine D.E. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 2008;13:6938–6946. PubMed
Mans B.J., de Castro M.H., Pienaar R., de Klerk D., Gaven P., Genu S., et al. Ancestral reconstruction of tick lineages. Ticks Tick Borne Dis. 2016;7:509–535. PubMed
Kaufman W.R. Gluttony and sex in female ixodid ticks: how do they compare to other blood-sucking arthropods? J. Insect Physiol. 2007;53:264–273. PubMed
Sonenshine D.E., Roe R.M. Biology of Ticks. 2nd Ed. Oxford University Press; New York, NY: 2014.
Kurokawa C., Lynn G.E., Pedra J.H.F., Pal U., Narasimhan S., Fikrig E. Interactions between Borrelia burgdorferi and ticks. Nat. Rev. Microbiol. 2020;18:587–600. PubMed PMC
Pal U., Kitsou C., Drecktrah D., Yas O.B., Fikrig E. Interactions between ticks and Lyme disease spirochetes. Curr. Issues Mol. Biol. 2021;42:113–144. PubMed PMC
Hajdusek O., Sima R., Ayllon N., Jalovecka M., Perner J., de la Fuente J., et al. Interaction of the tick immune system with transmitted pathogens. Front. Cell Infect. Microbiol. 2013;3:26. PubMed PMC
Franta Z., Frantova H., Konvickova J., Horn M., Sojka D., Mares M., et al. Dynamics of digestive proteolytic system during blood feeding of the hard tick Ixodes ricinus. Parasit Vectors. 2010;3:119. PubMed PMC
Sojka D., Franta Z., Horn M., Caffrey C.R., Mares M., Kopacek P. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 2013;29:276–285. PubMed
Sojka D., Franta Z., Horn M., Hajdusek O., Caffrey C.R., Mares M., et al. Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasite Vector. 2008;1:7. PubMed PMC
Chmelar J., Kotal J., Karim S., Kopacek P., Francischetti I.M.B., Pedra J.H.F., et al. Sialomes and mialomes: a systems-biology view of tick tissues and tick-host interactions. Trends Parasitol. 2016;32:242–254. PubMed PMC
Schwarz A., Tenzer S., Hackenberg M., Erhart J., Gerhold-Ay A., Mazur J., et al. A systems level analysis reveals transcriptomic and proteomic complexity in Ixodes ricinus midgut and salivary glands during early attachment and feeding. Mol. Cell Proteomics. 2014;13:2725–2735. PubMed PMC
Kotsyfakis M., Schwarz A., Erhart J., Ribeiro J.M. Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host. Sci. Rep. 2015;5:9103. PubMed PMC
Perner J., Kropackova S., Kopacek P., Ribeiro J.M.C. Sialome diversity of ticks revealed by RNAseq of single tick salivary glands. PLoS Negl. Trop. Dis. 2018;12 PubMed PMC
Medina J.M., Jmel M.A., Cuveele B., Gomez-Martin C., Aparicio-Puerta E., Mekki I., et al. Transcriptomic analysis of the tick midgut and salivary gland responses upon repeated blood-feeding on a vertebrate host. Front. Cell Infect. Microbiol. 2022;12 PubMed PMC
Perner J., Provaznik J., Schrenkova J., Urbanova V., Ribeiro J.M., Kopacek P. RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks. Sci. Rep. 2016;6 PubMed PMC
Mahmood S., Sima R., Urbanova V., Trentelman J.J.A., Krezdorn N., Winter P., et al. Identification of tick Ixodes ricinus midgut genes differentially expressed during the transmission of Borrelia afzelii spirochetes using a transcriptomic approach. Front. Immunol. 2020;11 PubMed PMC
Charrier N.P., Couton M., Voordouw M.J., Rais O., Durand-Hermouet A., Hervet C., et al. Whole body transcriptomes and new insights into the biology of the tick Ixodes ricinus. Parasit. Vectors. 2018;11:364. PubMed PMC
Vechtova P., Fussy Z., Cegan R., Sterba J., Erhart J., Benes V., et al. Catalogue of stage-specific transcripts in Ixodes ricinus and their potential functions during the tick life-cycle. Parasit. Vectors. 2020;13:311. PubMed PMC
Zhu H., Bilgin M., Snyder M. Proteomics. Annu. Rev. Biochem. 2003;72:783–812. PubMed
Manzoni C., Kia D.A., Vandrovcova J., Hardy J., Wood N.W., Lewis P.A., et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinform. 2018;19:286–302. PubMed PMC
Bensaoud C., Tenzer S., Poplawski A., Medina J.M., Jmel M.A., Voet H., et al. Quantitative proteomics analysis reveals core and variable tick salivary proteins at the tick-vertebrate host interface. Mol. Ecol. 2022;31:4162–4175. PubMed
De Silva A.M., Fikrig E. Growth and migration of Borrelia burgdorferi in Ixodes ticks during blood feeding. Am. J. Trop. Med. Hyg. 1995;53:397–404. PubMed
Pospisilova T., Urbanova V., Hes O., Kopacek P., Hajdusek O., Sima R. Tracking of Borrelia afzelii transmission from infected Ixodes ricinus nymphs to mice. Infect. Immun. 2019;87 PubMed PMC
Rappsilber J., Mann M., Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007;2:1896–1906. PubMed
Forinova M., Pilipenco A., Visova I., Lynn N.S., Jr., Dostalek J., Maskova H., et al. Functionalized terpolymer-brush-based biointerface with improved antifouling properties for ultra-sensitive direct detection of virus in crude clinical samples. ACS Appl. Mater. Inter. 2021;13:60612–60624. PubMed
Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. PubMed
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. PubMed
Gotz S., Garcia-Gomez J.M., Terol J., Williams T.D., Nagaraj S.H., Nueda M.J., et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36:3420–3435. PubMed PMC
Klopfenstein D.V., Zhang L., Pedersen B.S., Ramirez F., Warwick Vesztrocy A., Naldi A., et al. GOATOOLS: a Python library for Gene Ontology analyses. Sci. Rep. 2018;8 PubMed PMC
Conesa A., Gotz S., Garcia-Gomez J.M., Terol J., Talon M., Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–3676. PubMed
Dusbabek F. Nymphal sexual dimorphism in the sheep tick Ixodes ricinus (Acari: ixodidae) Folia Parasitol. (Praha) 1996;43:75–79. PubMed
Inohara N., Nunez G. ML -- a conserved domain involved in innate immunity and lipid metabolism. Trends Biochem. Sci. 2002;27:219–221. PubMed
Citelli M., Lara F.A., da Silva Vaz I., Jr., Oliveira P.L. Oxidative stress impairs heme detoxification in the midgut of the cattle tick, Rhipicephalus (Boophilus) microplus. Mol. Biochem. Parasitol. 2007;151:81–88. PubMed
Lu S., Martins L.A., Kotal J., Ribeiro J.M.C., Tirloni L. A longitudinal transcriptomic analysis from unfed to post-engorgement midguts of adult female Ixodes scapularis. Sci. Rep. 2023;13 PubMed PMC
Canavoso L.E., Jouni Z.E., Karnas K.J., Pennington J.E., Wells M.A. Fat metabolism in insects. Annu. Rev. Nutr. 2001;21:23–46. PubMed
Toprak U., Hegedus D., Dogan C., Guney G. A journey into the world of insect lipid metabolism. Arch. Insect Biochem. Physiol. 2020;104 PubMed
O'Neal A.J., Butler L.R., Rolandelli A., Gilk S.D., Pedra J.H. Lipid hijacking: a unifying theme in vector-borne diseases. Elife. 2020;9:e61675. PubMed PMC
Clark A.J., Block K. The absence of sterol synthesis in insects. J. Biol. Chem. 1959;234:2578–2582. PubMed
Jing X., Behmer S.T. Insect sterol nutrition: physiological mechanisms, ecology, and applications. Annu. Rev. Entomol. 2020;65:251–271. PubMed
Ogihara M.H., Hikiba J., Suzuki Y., Taylor D., Kataoka H. Ovarian ecdysteroidogenesis in both immature and mature stages of an Acari, Ornithodoros moubata. PLoS One. 2015;10 PubMed PMC
Qu Z., Kenny N.J., Lam H.M., Chan T.F., Chu K.H., Bendena W.G., et al. How did arthropod sesquiterpenoids and ecdysteroids arise? Comparison of hormonal pathway genes in noninsect arthropod genomes. Genome Biol. Evol. 2015;7:1951–1959. PubMed PMC
Gondim K.C., Atella G.C., Pontes E.G., Majerowicz D. Lipid metabolism in insect disease vectors. Insect Biochem. Mol. Biol. 2018;101:108–123. PubMed
Rosendale A.J., Dunlevy M.E., McCue M.D., Benoit J.B. Progressive behavioural, physiological and transcriptomic shifts over the course of prolonged starvation in ticks. Mol. Ecol. 2019;28:49–65. PubMed
Abdullah S., Davies S., Wall R. Spectrophotometric analysis of lipid used to examine the phenology of the tick Ixodes ricinus. Parasit Vectors. 2018;11:523. PubMed PMC
Randolph S.E., Green R.M., Hoodless A.N., Peacey M.F. An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus. Int. J. Parasitol. 2002;32:979–989. PubMed
Wilton D.C., Waite M. In: New Comprehensive Biochemistry. Vance D.E., Vance J.E., editors. Elsevier; Amsterdam: 2002. Chapter 11 phospholipases; pp. 291–314.
Zhang D., Du G. In: Biochemistry of Lipids, Lipoproteins and Membranes. 7th Ed. Ridgway N.D., McLeod R.S., editors. Elsevier; Amsterdam: 2021. Chapter 8 - phospholipid catabolism; pp. 259–280.
Wong H., Schotz M.C. The lipase gene family. J. Lipid Res. 2002;43:993–999. PubMed
Holmquist M. Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms. Curr. Protein Pept. Sci. 2000;1:209–235. PubMed
Hannun Y.A., Obeid L.M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 2008;9:139–150. PubMed
Hiraiwa M., Martin B.M., Kishimoto Y., Conner G.E., Tsuji S., O'Brien J.S. Lysosomal proteolysis of prosaposin, the precursor of saposins (sphingolipid activator proteins): its mechanism and inhibition by ganglioside. Arch. Biochem. Biophys. 1997;341:17–24. PubMed
Vaccaro A.M., Salvioli R., Tatti M., Ciaffoni F. Saposins and their interaction with lipids. Neurochem. Res. 1999;24:307–314. PubMed
Kishimoto Y., Hiraiwa M., O'Brien J.S. Saposins: structure, function, distribution, and molecular genetics. J. Lipid Res. 1992;33:1255–1267. PubMed
O'Brien J.S., Kishimoto Y. Saposin proteins: structure, function, and role in human lysosomal storage disorders. FASEB J. 1991;5:301–308. PubMed
Hindle S.J., Hebbar S., Schwudke D., Elliott C.J.H., Sweeney S.T. A saposin deficiency model in Drosophila: lysosomal storage, progressive neurodegeneration and sensory physiological decline. Neurobiol. Dis. 2017;98:77–87. PubMed PMC
Sellin J., Schulze H., Paradis M., Gosejacob D., Papan C., Shevchenko A., et al. Characterization of Drosophila Saposin-related mutants as a model for lysosomal sphingolipid storage diseases. Dis. Model Mech. 2017;10:737–750. PubMed PMC
Brasaemle D.L. Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J. Lipid Res. 2007;48:2547–2559. PubMed
Beller M., Bulankina A.V., Hsiao H.H., Urlaub H., Jackle H., Kuhnlein R.P. PERILIPIN-dependent control of lipid droplet structure and fat storage in Drosophila. Cell Metab. 2010;12:521–532. PubMed
Li X., Saha P., Li J., Blobel G., Pfeffer S.R. Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2. Proc. Natl. Acad. Sci. U. S. A. 2016;113:10079–10084. PubMed PMC
Trinh M.N., Brown M.S., Seemann J., Goldstein J.L., Lu F. Lysosomal cholesterol export reconstituted from fragments of Niemann-Pick C1. Elife. 2018;7:e38564. PubMed PMC
Deffieu M.S., Pfeffer S.R. Niemann-Pick type C 1 function requires lumenal domain residues that mediate cholesterol-dependent NPC2 binding. Proc. Natl. Acad. Sci. U. S. A. 2011;108:18932–18936. PubMed PMC
Thomas W.R., Smith W. House-dust-mite allergens. Allergy. 1998;53:821–832. PubMed
Reginald K., Chew F.T. The major allergen Der p 2 is a cholesterol binding protein. Sci. Rep. 2019;9:1556. PubMed PMC
Taylor F.R., Saucier S.E., Shown E.P., Parish E.J., Kandutsch A.A. Correlation between oxysterol binding to a cytosolic binding protein and potency in the repression of hydroxymethylglutaryl coenzyme A reductase. J. Biol. Chem. 1984;259:12382–12387. PubMed
Vihervaara T., Jansen M., Uronen R.L., Ohsaki Y., Ikonen E., Olkkonen V.M. Cytoplasmic oxysterol-binding proteins: sterol sensors or transporters? Chem. Phys. Lipids. 2011;164:443–450. PubMed
Weber-Boyvat M., Zhong W., Yan D., Olkkonen V.M. Oxysterol-binding proteins: functions in cell regulation beyond lipid metabolism. Biochem. Pharmacol. 2013;86:89–95. PubMed
Hynynen R., Suchanek M., Spandl J., Back N., Thiele C., Olkkonen V.M. OSBP-related protein 2 is a sterol receptor on lipid droplets that regulates the metabolism of neutral lipids. J. Lipid Res. 2009;50:1305–1315. PubMed PMC
Beh C.T., Rine J. A role for yeast oxysterol-binding protein homologs in endocytosis and in the maintenance of intracellular sterol-lipid distribution. J. Cell Sci. 2004;117:2983–2996. PubMed
Fu Q., Lynn-Miller A., Lan Q. Characterization of the oxysterol-binding protein gene family in the yellow fever mosquito, Aedes aegypti. Insect Mol. Biol. 2011;20:541–552. PubMed PMC
Maya-Monteiro C.M., Daffre S., Logullo C., Lara F.A., Alves E.W., Capurro M.L., et al. HeLp, a heme lipoprotein from the hemolymph of the cattle tick, Boophilus microplus. J. Biol. Chem. 2000;275:36584–36589. PubMed
Perner J., Sobotka R., Sima R., Konvickova J., Sojka D., Oliveira P.L., et al. Acquisition of exogenous haem is essential for tick reproduction. Elife. 2016;5 PubMed PMC
Smolenaars M.M., Madsen O., Rodenburg K.W., Van der Horst D.J. Molecular diversity and evolution of the large lipid transfer protein superfamily. J. Lipid Res. 2007;48:489–502. PubMed
Horn M., Nussbaumerova M., Sanda M., Kovarova Z., Srba J., Franta Z., et al. Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chem. Biol. 2009;16:1053–1063. PubMed PMC
Sojka D., Pytelkova J., Perner J., Horn M., Konvickova J., Schrenkova J., et al. Multienzyme degradation of host serum albumin in ticks. Ticks Tick Borne Dis. 2016;7:604–613. PubMed
Sojka D., Franta Z., Frantova H., Bartosova P., Horn M., Vachova J., et al. Characterization of gut-associated cathepsin D hemoglobinase from tick Ixodes ricinus (IrCD1) J. Biol. Chem. 2012;287:21152–21163. PubMed PMC
Cruz C.E., Fogaca A.C., Nakayasu E.S., Angeli C.B., Belmonte R., Almeida I.C., et al. Characterization of proteinases from the midgut of Rhipicephalus (Boophilus) microplus involved in the generation of antimicrobial peptides. Parasit Vectors. 2010;3:63. PubMed PMC
Fogaca A.C., da Silva P.I., Jr., Miranda M.T., Bianchi A.G., Miranda A., Ribolla P.E., et al. Antimicrobial activity of a bovine hemoglobin fragment in the tick Boophilus microplus. J. Biol. Chem. 1999;274:25330–25334. PubMed
Tsuji N., Miyoshi T., Battsetseg B., Matsuo T., Xuan X., Fujisaki K. A cysteine protease is critical for Babesia spp. transmission in Haemaphysalis ticks. PLoS Pathog. 2008;4 PubMed PMC
Sojka D., Hajdusek O., Dvorak J., Sajid M., Franta Z., Schneider E.L., et al. IrAE - an asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int. J. Parasitol. 2007;37:713–724. PubMed PMC
Hartmann D., Sima R., Konvickova J., Perner J., Kopacek P., Sojka D. Multiple legumain isoenzymes in ticks. Int. J. Parasitol. 2018;48:167–178. PubMed
Hatta T., Kazama K., Miyoshi T., Umemiya R., Liao M., Inoue N., et al. Identification and characterisation of a leucine aminopeptidase from the hard tick Haemaphysalis longicornis. Int. J. Parasitol. 2006;36:1123–1132. PubMed
Motobu M., Tsuji N., Miyoshi T., Huang X., Islam M.K., Alim M.A., et al. Molecular characterization of a blood-induced serine carboxypeptidase from the ixodid tick Haemaphysalis longicornis. FEBS J. 2007;274:3299–3312. PubMed
Hatta T., Tsuji N., Miyoshi T., Islam M.K., Alim M.A., Yamaji K., et al. Leucine aminopeptidase, HlLAP, from the ixodid tick Haemaphysalis longicornis, plays vital roles in the development of oocytes. Parasitol. Int. 2010;59:286–289. PubMed
Miyoshi T., Tsuji N., Islam M.K., Kamio T., Fujisaki K. Cloning and molecular characterization of a cubilin-related serine proteinase from the hard tick Haemaphysalis longicornis. Insect Biochem. Mol. Biol. 2004;34:799–808. PubMed
Miyoshi T., Tsuji N., Islam M.K., Huang X., Motobu M., Alim M.A., et al. Molecular and reverse genetic characterization of serine proteinase-induced hemolysis in the midgut of the ixodid tick Haemaphysalis longicornis. J. Insect Physiol. 2007;53:195–203. PubMed
Dorrah M., Bensaoud C., Mohamed A.A., Sojka D., Bassal T.T.M., Kotsyfakis M. Comparison of the hemolysis machinery in two evolutionarily distant blood-feeding arthropod vectors of human diseases. PLoS Negl. Trop. Dis. 2021;15 PubMed PMC
Goptar I.A., Shagin D.A., Shagina I.A., Mudrik E.S., Smirnova Y.A., Zhuzhikov D.P., et al. A digestive prolyl carboxypeptidase in Tenebrio molitor larvae. Insect Biochem. Mol. Biol. 2013;43:501–509. PubMed
Lai R., Takeuchi H., Lomas L.O., Jonczy J., Rigden D.J., Rees H.H., et al. A new type of antimicrobial protein with multiple histidines from the hard tick, Amblyomma hebraeum. FASEB J. 2004;18:1447–1449. PubMed
Zupanic N., Pocic J., Leonardi A., Sribar J., Kordis D., Krizaj I. Serine pseudoproteases in physiology and disease. FEBS J. 2023;290:2263–2278. PubMed
Wu J., Zhou X., Chen Q., Chen Z., Zhang J., Yang L., et al. Defensins as a promising class of tick antimicrobial peptides: a scoping review. Infect. Dis. Poverty. 2022;11:71. PubMed PMC
Rawlings N.D., Barrett A.J., Thomas P.D., Huang X., Bateman A., Finn R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624–D632. PubMed PMC
Turk V., Stoka V., Turk D. Cystatins: biochemical and structural properties, and medical relevance. Front. Biosci. 2008;13:5406–5420. PubMed
Turk V., Bode W. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. 1991;285:213–219. PubMed
Kotsyfakis M., Sa-Nunes A., Francischetti I.M., Mather T.N., Andersen J.F., Ribeiro J.M. Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J. Biol. Chem. 2006;281:26298–26307. PubMed
Kotsyfakis M., Karim S., Andersen J.F., Mather T.N., Ribeiro J.M. Selective cysteine protease inhibition contributes to blood-feeding success of the tick Ixodes scapularis. J. Biol. Chem. 2007;282:29256–29263. PubMed
Kotál J., Buša M., Urbanová V., Řezačová P., Chmelař J., Langhansová H., et al. Mialostatin, a novel midgut cystatin from Ixodes ricinus ticks: crystal structure and regulation of host blood digestion. Int. J. Mol. Sci. 2021;22:5371. PubMed PMC
Kotál J., Stergiou N., Buša M., Chlastáková A., Beránková Z., Řezáčová P., et al. The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin. Cell Mol. Life Sci. 2019;76:2003–2013. PubMed PMC
Mihelič M., Turk D. Two decades of thyroglobulin type-1 domain research. Biol. Chem. 2007;388:1123–1130. PubMed
Porter L.M., Radulovič Z.M., Mulenga A. A repertoire of protease inhibitor families in Amblyomma americanum and other tick species: inter-species comparative analyses. Parasit. Vectors. 2017;10:152. PubMed PMC
Kaščáková B., Kotál J., Martins L.A., Beránková Z., Langhansová H., Calvo E., et al. Structural and biochemical characterization of the novel serpin Iripin-5 from Ixodes ricinus. Acta Crystallogr. D Struct. Biol. 2021;77:1183–1196. PubMed PMC
Prevot P.P., Adam B., Boudjeltia K.Z., Brossard M., Lins L., Cauchie P., et al. Anti-hemostatic effects of a serpin from the saliva of the tick Ixodes ricinus. J. Biol. Chem. 2006;281:26361–26369. PubMed
Prevot P.P., Couvreur B., Denis V., Brossard M., Vanhamme L., Godfroid E. Protective immunity against Ixodes ricinus induced by a salivary serpin. Vaccine. 2007;25:3284–3292. PubMed
Abbas M.N., Chlastáková A., Jmel M.A., Iliaki-Giannakoudaki E., Chmelař J., Kotsyfakis M. Serpins in tick physiology and tick-host interaction. Front. Cell Infect. Microbiol. 2022;12 PubMed PMC
Fogaca A.C., Almeida I.C., Eberlin M.N., Tanaka A.S., Bulet P., Daffre S. Ixodidin, a novel antimicrobial peptide from the hemocytes of the cattle tick Boophilus microplus with inhibitory activity against serine proteinases. Peptides. 2006;27:667–674. PubMed
Sasaki S.D., de Lima C.A., Lovato D.V., Juliano M.A., Torquato R.J., Tanaka A.S. BmSI-7, a novel subtilisin inhibitor from Boophilus microplus, with activity toward Pr1 proteases from the fungus Metarhizium anisopliae. Exp. Parasitol. 2008;118:214–220. PubMed
Chmelař J., Calvo E., Pedra J.H., Francischetti I.M., Kotsyfakis M. Tick salivary secretion as a source of antihemostatics. J. Proteomics. 2012;75:3842–3854. PubMed PMC
Macedo-Ribeiro S., Almeida C., Calisto B.M., Friedrich T., Mentele R., Sturzebecher J., et al. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick. PLoS One. 2008;3:e1624. PubMed PMC
Narasimhan S., Sukumaran B., Bozdogan U., Thomas V., Liang X., DePonte K., et al. A tick antioxidant facilitates the Lyme disease agent's successful migration from the mammalian host to the arthropod vector. Cell Host Microbe. 2007;2:7–18. PubMed PMC
Das S., Banerjee G., DePonte K., Marcantonio N., Kantor F.S., Fikrig E. Salp25D, an Ixodes scapularis antioxidant, is 1 of 14 immunodominant antigens in engorged tick salivary glands. J. Infect. Dis. 2001;184:1056–1064. PubMed
De S., Kingan S.B., Kitsou C., Portik D.M., Foor S.D., Frederick J.C., et al. A high-quality Ixodes scapularis genome advances tick science. Nat. Genet. 2023;55:301–311. PubMed
Tripathi T., Chetri P.B. Potent inhibitors of thioredoxin glutathione reductase: grail of anti-schistosome drug within reach? ACS Infect. Dis. 2020;6:893–895. PubMed
Reddy B.P., Prasad G.B., Raghavendra K. In silico analysis of glutathione S-transferase supergene family revealed hitherto unreported insect specific delta- and epsilon-GSTs and mammalian specific mu-GSTs in Ixodes scapularis (Acari: ixodidae) Comput. Biol. Chem. 2011;35:114–120. PubMed
Perner J., Kotal J., Hatalova T., Urbanova V., Bartosova-Sojkova P., Brophy P.M., et al. Inducible glutathione S-transferase (IrGST1) from the tick Ixodes ricinus is a haem-binding protein. Insect Biochem. Mol. Biol. 2018;95:44–54. PubMed
Ndawula C., Jr., Amaral Xavier M., Villavicencio B., Cortez Lopes F., Juliano M.A., Parizi L.F., et al. Prediction, mapping and validation of tick glutathione S-transferase B-cell epitopes. Ticks Tick Borne Dis. 2020;11 PubMed
Ozelame K.P.C., Mattia M.M.C., Dedavid E.S.L.A., Randall L.M., Corvo I., Saporiti T., et al. Novel tick glutathione transferase inhibitors as promising acaricidal compounds. Ticks Tick Borne Dis. 2022;13 PubMed
Gulia-Nuss M., Nuss A.B., Meyer J.M., Sonenshine D.E., Roe R.M., Waterhouse R.M., et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 2016;7 PubMed PMC
Pichu S., Yalcin E.B., Ribeiro J.M., King R.S., Mather T.N. Molecular characterization of novel sulfotransferases from the tick, Ixodes scapularis. BMC Biochem. 2011;12:32. PubMed PMC
Yalcin E.B., Stangl H., Pichu S., Mather T.N., King R.S. Monoamine neurotransmitters as substrates for novel tick sulfotransferases, homology modeling, molecular docking, and enzyme kinetics. ACS Chem. Biol. 2011;6:176–184. PubMed PMC
Guizzo M.G., Neupane S., Kucera M., Perner J., Frantova H., da Silva Vaz I., et al. Poor unstable midgut microbiome of hard ticks contrasts with abundant and stable monospecific microbiome in ovaries. Front. Cell Infect. Microbiol. 2020;10:211. PubMed PMC
Guizzo M.G., Dolezelikova K., Neupane S., Frantova H., Hrbatova A., Pafco B., et al. Characterization and manipulation of the bacterial community in the midgut of Ixodes ricinus. Parasit Vectors. 2022;15:248. PubMed PMC
Fogaca A.C., Sousa G., Pavanelo D.B., Esteves E., Martins L.A., Urbanova V., et al. Tick immune system: what is known, the interconnections, the gaps, and the challenges. Front. Immunol. 2021;12 PubMed PMC
Chrudimska T., Slaninova J., Rudenko N., Ruzek D., Grubhoffer L. Functional characterization of two defensin isoforms of the hard tick Ixodes ricinus. Parasit Vectors. 2011;4:63. PubMed PMC
Tonk M., Cabezas-Cruz A., Valdes J.J., Rego R.O., Rudenko N., Golovchenko M., et al. Identification and partial characterisation of new members of the Ixodes ricinus defensin family. Gene. 2014;540:146–152. PubMed
Fogaca A.C., Lorenzini D.M., Kaku L.M., Esteves E., Bulet P., Daffre S. Cysteine-rich antimicrobial peptides of the cattle tick Boophilus microplus: isolation, structural characterization and tissue expression profile. Dev. Comp. Immunol. 2004;28:191–200. PubMed
Silva F.D., Rezende C.A., Rossi D.C., Esteves E., Dyszy F.H., Schreier S., et al. Structure and mode of action of microplusin, a copper II-chelating antimicrobial peptide from the cattle tick Rhipicephalus (Boophilus) microplus. J. Biol. Chem. 2009;284:34735–34746. PubMed PMC
Chou S., Daugherty M.D., Peterson S.B., Biboy J., Yang Y., Jutras B.L., et al. Transferred interbacterial antagonism genes augment eukaryotic innate immune function. Nature. 2015;518:98–101. PubMed PMC
Hayes B.M., Radkov A.D., Yarza F., Flores S., Kim J., Zhao Z., et al. Ticks resist skin commensals with immune factor of bacterial origin. Cell. 2020;183:1562–1571.e1512. PubMed PMC
Hegedus D., Erlandson M., Gillott C., Toprak U. New insights into peritrophic matrix synthesis, architecture, and function. Annu. Rev. Entomol. 2009;54:285–302. PubMed
Narasimhan S., Rajeevan N., Liu L., Zhao Y.O., Heisig J., Pan J., et al. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host Microbe. 2014;15:58–71. PubMed PMC
Radolf J.D., Caimano M.J., Stevenson B., Hu L.T. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 2012;10:87–99. PubMed PMC
Liu X., Cooper A.M.W., Zhang J., Zhu K.Y. Biosynthesis, modifications and degradation of chitin in the formation and turnover of peritrophic matrix in insects. J. Insect Physiol. 2019;114:109–115. PubMed
Helble J.D., McCarthy J.E., Hu L.T. Interactions between Borrelia burgdorferi and its hosts across the enzootic cycle. Parasite Immunol. 2021;43 PubMed PMC
DeHart T.G., Kushelman M.R., Hildreth S.B., Helm R.F., Jutras B.L. The unusual cell wall of the Lyme disease spirochaete Borrelia burgdorferi is shaped by a tick sugar. Nat. Microbiol. 2021;6:1583–1592. PubMed PMC
Kariu T., Smith A., Yang X., Pal U. A chitin deacetylase-like protein is a predominant constituent of tick peritrophic membrane that influences the persistence of Lyme disease pathogens within the vector. PLoS One. 2013;8 PubMed PMC
Yang X., Koci J., Smith A.A., Zhuang X., Sharma K., Dutta S., et al. A novel tick protein supports integrity of gut peritrophic matrix impacting existence of gut microbiome and Lyme disease pathogens. Cell Microbiol. 2021;23 PubMed PMC
Abraham N.M., Liu L., Jutras B.L., Yadav A.K., Narasimhan S., Gopalakrishnan V., et al. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc. Natl. Acad. Sci. U. S. A. 2017;114:E781–E790. PubMed PMC
Narasimhan S., Schuijt T.J., Abraham N.M., Rajeevan N., Coumou J., Graham M., et al. Modulation of the tick gut milieu by a secreted tick protein favors Borrelia burgdorferi colonization. Nat. Commun. 2017;8:184. PubMed PMC
Perner J., Gasser R.B., Oliveira P.L., Kopacek P. Haem biology in metazoan parasites - 'the bright side of haem'. Trends Parasitol. 2019;35:213–225. PubMed
Ruiz-May E., Alvarez-Sanchez M.E., Aguilar-Tipacamu G., Elizalde-Contreras J.M., Bojorquez-Velazquez E., Zamora-Briseno J.A., et al. Comparative proteome analysis of the midgut of Rhipicephalus microplus (Acari: Ixodidae) strains with contrasting resistance to ivermectin reveals the activation of proteins involved in the detoxification metabolism. J. Proteomics. 2022;263:104618. PubMed