Quantitative proteomics analysis reveals core and variable tick salivary proteins at the tick-vertebrate host interface

. 2022 Aug ; 31 (15) : 4162-4175. [epub] 20220619

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35661311

Few studies have examined tick proteomes, how they adapt to their environment, and their roles in the parasite-host interactions that drive tick infestation and pathogen transmission. Here we used a proteomics approach to screen for biologically and immunologically relevant proteins acting at the tick-host interface during tick feeding and, as proof of principle, measured host antibody responses to some of the discovered candidates. We used a label-free quantitative proteomic workflow to study salivary proteomes of (i) wild Ixodes ricinus ticks fed on different hosts, (ii) wild or laboratory ticks fed on the same host, and (iii) adult ticks cofed with nymphs. Our results reveal high and stable expression of several protease inhibitors and other tick-specific proteins under different feeding conditions. Most pathways functionally enriched in sialoproteomes were related to proteolysis, endopeptidase, and amine-binding activities. The generated catalogue of tick salivary proteins enabled the selection of six candidate secreted immunogenic peptides for rabbit immunizations, three of which induced strong and durable antigen-specific antibody responses in rabbits. Furthermore, rabbits exposed to ticks mounted immune responses against the candidate peptides/proteins, confirming their expression at the tick-vertebrate interface. Our approach provides insights into tick adaptation strategies to different feeding conditions and promising candidates for developing antitick vaccines or markers of exposure of vertebrate hosts to tick bites.

Zobrazit více v PubMed

Alkishe, A. A., Peterson, A. T., & Samy, A. M. (2017). Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus. PLoS One, 12(12), e0189092. https://doi.org/10.1371/journal.pone.0189092

Almazán, C., Fourniol, L., Rakotobe, S., Šimo, L., Bornères, J., Cote, M., Peltier, S., Maye, J., Versillé, N., Richardson, J., & Bonnet, S. I. (2020). Failed disruption of tick feeding, viability, and molting after immunization of mice and sheep with recombinant Ixodes ricinus salivary proteins irspi and irlip1. Vaccine, 8(3), 1-16. https://doi.org/10.3390/vaccines8030475

Almazán, C., Šimo, L., Fourniol, L., Rakotobe, S., Borneres, J., Cote, M., Peltier, S., Mayé, J., Versillé, N., Richardson, J., & Bonnet, S. I. (2020). Multiple antigenic peptide-based vaccines targeting Ixodes ricinus neuropeptides induce a specific antibody response but do not impact tick infestation. Pathogens, 9(11), 900. https://doi.org/10.3390/pathogens9110900

Bantscheff, M., & Kuster, B. (2012). Quantitative mass spectrometry in proteomics. Analytical and Bioanalytical Chemistry, 404(4), 937-938. https://doi.org/10.1007/s00216-012-6261-7

Bateman, A. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506-D515. https://doi.org/10.1093/nar/gky1049

Bensaoud, C., Hackenberg, M., & Kotsyfakis, M. (2019). Noncoding RNAs in parasite-vector-host interactions. Trends in Parasitology, 35(9), 715-724. https://doi.org/10.1016/j.pt.2019.06.012

Bousquet, T. (2015). Clinical laboratory animal medicine: An Introduction, 4th edition. The Canadian Veterinary Journal. La Revue Veterinaire Canadienne, 56(11), 1192.

Bowman, A. S., Dillwith, J. W., & Sauer, J. R. (1996). Tick salivary prostaglandins: Presence, origin and significance. Parasitology Today, 12(10), 388-396. https://doi.org/10.1016/0169-4758(96)10061-2

Burri, C., Dupasquier, C., Bastic, V., & Gern, L. (2011). Pathogens of emerging tick-borne diseases, Anaplasma phagocytophilum, Rickettsia spp., and Babesia spp., in Ixodes ticks collected from rodents at four sites in Switzerland (Canton of Bern). Vector-Borne and Zoonotic Diseases, 11(7), 939-944. https://doi.org/10.1089/vbz.2010.0215

Charrier, N. P., Couton, M., Voordouw, M. J., Rais, O., Durand-Hermouet, A., Hervet, C., Plantard, O., & Rispe, C. (2018). Whole body transcriptomes and new insights into the biology of the tick Ixodes ricinus. Parasites and Vectors, 11(1), 364. https://doi.org/10.1186/s13071-018-2932-3

Chmelar, J., Calvo, E., Pedra, J. H. F., Francischetti, I. M. B., & Kotsyfakis, M. (2012). Tick salivary secretion as a source of antihemostatics. Journal of Proteomics, 75(13), 3842-3854. https://doi.org/10.1016/j.jprot.2012.04.026

Chmelař, J., Kotál, J., Karim, S., Kopacek, P., Francischetti, I. M. B., Pedra, J. H. F., & Kotsyfakis, M. (2016). Sialomes and Mialomes: A systems-biology view of tick tissues and tick-host interactions. Trends in Parasitology, 32, 242-254. https://doi.org/10.1016/j.pt.2015.10.002

Cobon, G. S., & Hungerford, J. (1995). Commercialisation of a recombinant vaccine against Boophilus microplus. Parasitology, 110(S1), S43-S50. https://doi.org/10.1017/S0031182000001487

Condrey, J. A., Flietstra, T., Nestor, K. M., Schlosser, E. L., Coleman-McCray, J. D., Genzer, S. C., Welch, S. R., & Spengler, J. R. (2020). Prothrombin time, activated partial thromboplastin time, and fibrinogen reference intervals for inbred strain 13/n Guinea pigs (Cavia porcellus) and validation of low volume sample analysis. Microorganisms, 8(8), 1-11. https://doi.org/10.3390/microorganisms8081127

Cracknell, J. (2008). Anaesthesia of exotic pets. Veterinary Record, 162(26), 864. https://doi.org/10.1136/vr.162.26.864

Cramaro, W. J., Revets, D., Hunewald, O. E., Sinner, R., Reye, A. L., & Muller, C. P. (2015). Integration of Ixodes ricinus genome sequencing with transcriptome and proteome annotation of the naïve midgut. BMC Genomics, 16(1), 871. https://doi.org/10.1186/s12864-015-1981-7

De La Fuente, J. (2003). The fossil record and the origin of ticks (Acari: Parasitiformes: Ixodida). Experimental and Applied Acarology, 29(3-4), 331-344. https://doi.org/10.1023/A:1025824702816

Déruaz, M., Frauenschuh, A., Alessandri, A. L., Dias, J. M., Coelho, F. M., Russo, R. C., Ferreira, B. R., Graham, G. J., Shaw, J. P., Wells, T. N., Teixeira, M. M., Power, C. A., & Proudfoot, A. E. (2008). Journal of. Experimental Medicine, 205(9), 2019-2031. https://doi.org/10.1084/jem.20072689

Distler, U., Kuharev, J., Navarro, P., Levin, Y., Schild, H., & Tenzer, S. (2014). Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. Nature Methods, 11(2), 167-170. https://doi.org/10.1038/nmeth.2767

Esmon, C. T., Xu, J., & Lupu, F. (2011). Innate immunity and coagulation. Journal of Thrombosis and Haemostasis, 9(1S), 182-188. https://doi.org/10.1111/j.1538-7836.2011.04323.x

Evans, G. O., O'Brien, P., & Watterson, C. L. (2009). Animal clinical chemistry: A practical guide for toxicologists and biomedical researchers (2nd ed.). CRC Press.

Francischetti, I. M. B., Sa-Nunes, A., Mans, B. J., Santos, I. M., & Ribeiro, J. M. C. (2009). The role of saliva in tick feeding. Frontiers in Bioscience (Landmark Edition), 14(20), 2051-2088.

Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23), 3150-3152. https://doi.org/10.1093/bioinformatics/bts565

Geromanos, S. J., Vissers, J. P., Silva, J. C., Dorschel, C. A., Li, G. Z., Gorenstein, M. V., Bateman, R. H., & Langridge, J. I. (2009). The detection, correlation, and comparison of peptide precursor and product ions from data independent LCMS with data dependant LC-MS/MS. Proteomics, 9(6), 1683-1695. https://doi.org/10.1002/pmic.200800562

Ghazalpour, A., Bennett, B., Petyuk, V. A., Orozco, L., Hagopian, R., Mungrue, I. N., Farber, C. R., Sinsheimer, J., Kang, H. M., Furlotte, N., Park, C. C., Wen, P. Z., Brewer, H., Weitz, K., Camp, D. G., 2nd, Pan, C., Yordanova, R., Neuhaus, I., Tilford, C., … Lusis, A. J. (2011). Comparative analysis of proteome and transcriptome variation in mouse. PLoS Genetics, 7(6), 1001393. https://doi.org/10.1371/journal.pgen.1001393

Giles, K., Pringle, S. D., Worthington, K. R., Little, D., Wildgoose, J. L., & Bateman, R. H. (2004). Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Communications in Mass Spectrometry, 18(20), 2401-2414. https://doi.org/10.1002/rcm.1641

Gray, J., Von Stedingk, L. V., Gürtelschmid, M., & Granström, M. (2002). Transmission studies of babesia microti in Ixodes ricinus ticks and gerbils. Journal of Clinical Microbiology, 40(4), 1259-1263. https://doi.org/10.1128/JCM.40.4.1259-1263.2002

Halperin, J. J. (2007). Tick-borne encephalitis. In Encephalitis: Diagnosis and treatment (Vol. 34, pp. 157-166). CRC Press, OIE (World Orgnization for Animal Health). https://doi.org/10.20506/rst.34.2.2371

Heutinck, K. M., ten Berge, I. J. M., Hack, C. E., Hamann, J., & Rowshani, A. T. (2010). Serine proteases of the human immune system in health and disease. Molecular Immunology, 47(11-12), 1943-1955. https://doi.org/10.1016/j.molimm.2010.04.020

Hochberg, Y., & Benjamini, Y. (1990). More powerful procedures for multiple significance testing. Statistics in Medicine, 9(7), 811-818. https://doi.org/10.1002/sim.4780090710

Jmel, M. A., Aounallah, H., Bensaoud, C., Mekki, I., Chmelař, J., Faria, F., M'ghirbi, Y., & Kotsyfakis, M. (2021). Insights into the role of tick salivary protease inhibitors during ectoparasite-host crosstalk. International Journal of Molecular Sciences, 22(2), 892. https://doi.org/10.3390/ijms22020892

Kazimírová, M., & Štibrániová, I. (2013). Tick salivary compounds: Their role in modulation of host defences and pathogen transmission. Frontiers in Cellular and Infection Microbiology, 3, 43. https://doi.org/10.3389/fcimb.2013.00043

Mans, B. J. (2020). Quantitative visions of reality at the tick-host Interface: Biochemistry, genomics, proteomics, and transcriptomics as measures of complete inventories of the tick Sialoverse. Frontiers in Cellular and Infection Microbiology, 10, 574405. https://doi.org/10.3389/fcimb.2020.574405

Parola, P., Paddock, C. D., & Raoult, D. (2005). Tick-borne rickettsioses around the world: Emerging diseases challenging old concepts. Clinical Microbiology Reviews, 18(4), 719-756. https://doi.org/10.1128/CMR.18.4.719-756.2005

Patel, V. J., Thalassinos, K., Slade, S. E., Connolly, J. B., Crombie, A., Murrell, J. C., & Scrivens, J. H. (2009). A comparison of labeling and label-free mass spectrometry-based proteomics approaches. Journal of Proteome Research, 8(7), 3752-3759. https://doi.org/10.1021/pr900080y

Patzig, J., Jahn, O., Tenzer, S., Wichert, S. P., de Monasterio-Schrader, P., Rosfa, S., Kuharev, J., Yan, K., Bormuth, I., Bremer, J., Aguzzi, A., Orfaniotou, F., Hesse, D., Schwab, M. H., Möbius, W., Nave, K. A., & Werner, H. B. (2011). Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. Journal of Neuroscience, 31(45), 16369-16386. https://doi.org/10.1523/JNEUROSCI.4016-11.2011

Perner, J., Kropáčková, S., Kopáček, P., & Ribeiro, J. M. C. (2018). Sialome diversity of ticks revealed by RNAseq of single tick salivary glands. PLoS Neglected Tropical Diseases, 12(4), e0006410. https://doi.org/10.1371/journal.pntd.0006410

Ranasinghe, S., & McManus, D. P. (2013). Structure and function of invertebrate Kunitz serine protease inhibitors. Developmental & Comparative Immunology, 39(3), 219-227. https://doi.org/10.1016/J.DCI.2012.10.005

Schwarz, A., Tenzer, S., Hackenberg, M., Erhart, J., Gerhold-Ay, A., Mazur, J., Kuharev, J., Ribeiro, J. M., & Kotsyfakis, M. (2014). A systems level analysis reveals transcriptomic and proteomic complexity in Ixodes ricinus midgut and salivary glands during early attachment and feeding. Molecular & Cellular Proteomics, 13(10), 2725-2735. https://doi.org/10.1074/mcp.M114.039289

Schwarz, A., Von Reumont, B. M., Erhart, J., Chagas, A. C., Ribeiro, J. M. C., & Kotsyfakis, M. (2013). De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. FASEB Journal, 27(12), 4745-4756. https://doi.org/10.1096/fj.13-232140

Silva, J. C., Denny, R., Dorschel, C. A., Gorenstein, M., Kass, I. J., Li, G. Z., McKenna, T., Nold, M. J., Richardson, K., Young, P., & Geromanos, S. (2005). Quantitative proteomic analysis by accurate mass retention time pairs. Analytical Chemistry, 77(7), 2187-2200. https://doi.org/10.1021/ac048455k

Sonenshine, D. E. (2004). Pheromones and other semiochemicals of ticks and their use in tick control. Parasitology, 129(SUPPL), S405-S425. https://doi.org/10.1017/S003118200400486X

Sonenshine, D. E. (2006). Tick pheromones and their use in tick control. Annual Review of Entomology, 51, 557-580. https://doi.org/10.1146/annurev.ento.51.110104.151150

Tenzer, S., Docter, D., Rosfa, S., Wlodarski, A., Kuharev, J., Rekik, A., Knauer, S. K., Bantz, C., Nawroth, T., Bier, C., Sirirattanapan, J., Mann, W., Treuel, L., Zellner, R., Maskos, M., Schild, H., & Stauber, R. H. (2011). Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: A comprehensive quantitative proteomic analysis. ACS Nano, 5(9), 7155-7167. https://doi.org/10.1021/nn201950e

Tomás-Cortázar, J., Martín-Ruiz, I., Barriales, D., Pascual-Itoiz, M. Á., de Juan, V. G., Caro-Maldonado, A., Merino, N., Marina, A., Blanco, F. J., Flores, J. M., Sutherland, J. D., Barrio, R., Rojas, A., Martínez-Chantar, M. L., Carracedo, A., Simó, C., García-Cañas, V., Abecia, L., Lavín, J. L., … Anguita, J. (2017). The immunosuppressive effect of the tick protein, Salp15, is long-lasting and persists in a murine model of hematopoietic transplant. Scientific Reports, 7, 10740. https://doi.org/10.1038/s41598-017-11354-2

Vechtova, P., Fussy, Z., Cegan, R., Sterba, J., Erhart, J., Benes, V., & Grubhoffer, L. (2020). Catalogue of stage-specific transcripts in Ixodes ricinus and their potential functions during the tick life-cycle. Parasites & Vectors, 13, 311. https://doi.org/10.1186/s13071-020-04173-4

Verespy, S., Mehta, A. Y., Afosah, D., Al-Horani, R. A., & Desai, U. R. (2016). Allosteric partial inhibition of monomeric proteases. Sulfated coumarins induce regulation, not just inhibition, of thrombin. Scientific Reports, 6(1), 1-13. https://doi.org/10.1038/srep24043

Webster, A. C., & Frank, C. L. (1985). Comparison of immune response stimulated in sheep, rabbits and Guinea pigs by the administration of multi-component clostridial vaccines. Australian Veterinary Journal, 62(4), 112-114. https://doi.org/10.1111/j.1751-0813.1985.tb07254.x

Wen, S., Wang, F., Ji, Z., Pan, Y., Jian, M., Bi, Y., Zhou, G., Luo, L., Chen, T., Li, L., Ding, Z., Abi, M. E., Liu, A., & Bao, F. (2020). Salp15, a multifunctional protein from tick saliva with potential pharmaceutical effects. Frontiers in Immunology, 10, 3067. https://doi.org/10.3389/fimmu.2019.03067

Wiśniewski, J. R., Zougman, A., Nagaraj, N., & Mann, M. (2009). Universal sample preparation method for proteome analysis. Nature Methods, 6(5), 359-362. https://doi.org/10.1038/nmeth.1322

Zhongwei, Y., Akula, S., Fu, Z., de Garavilla, L., Kervinen, J., Thorpe, M., & Hellman, L. (2019). Extended cleavage specificities of rabbit and Guinea pig mast cell chymases: Two highly specific leu-ases. International Journal of Molecular Sciences, 20(24), 6340. https://doi.org/10.3390/ijms20246340

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...