Characterization and manipulation of the bacterial community in the midgut of Ixodes ricinus

. 2022 Jul 09 ; 15 (1) : 248. [epub] 20220709

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35810301

Grantová podpora
GACR 19-04301S Czech Science Foundation
GACR 19-04301S Czech Science Foundation
GACR 19-04301S Czech Science Foundation
GACR 19-04301S Czech Science Foundation
GACR 19-04301S Czech Science Foundation
GACR 19-04301S Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000759 European Regional Development Fund (ERDF) and Ministry of Education, Youth and Sport (MEYS).
CZ.02.1.01/0.0/0.0/16_019/0000759 European Regional Development Fund (ERDF) and Ministry of Education, Youth and Sport (MEYS).
CAPES 001 CAPES

Odkazy

PubMed 35810301
PubMed Central PMC9271250
DOI 10.1186/s13071-022-05362-z
PII: 10.1186/s13071-022-05362-z
Knihovny.cz E-zdroje

BACKGROUND: Ticks are obligate hematophagous arthropods transmitting a wide range of pathogens to humans and animals. They also harbor a non-pathogenic microbiota, primarily in the ovaries and the midgut. In the previous study on Ixodes ricinus, we used a culture-independent approach and showed a diverse but quantitatively poor midgut bacterial microbiome. Our analysis also revealed the absence of a core microbiome, suggesting an environmental origin of the tick midgut microbiota. METHODS: A bacterial analysis of the midgut of adult females collected by flagging from two localities in the Czech Republic was performed. Using the culture-independent approach, we tested the hypothesis that the midgut microbiome is of the environmental origin. We also cultured indigenous bacteria from the tick midgut and used these to feed ticks artificially in an attempt to manipulate the midgut microbiome. RESULTS: The midgut showed a very low prevalence and abundance of culturable bacteria, with only 37% of ticks positive for bacteria. The culture-independent approach revealed the presence of Borrelia sp., Spiroplasma sp., Rickettsia sp., Midichloria sp. and various mainly environmental Gram-positive bacterial taxa. The comparison of ticks from two regions revealed that the habitat influenced the midgut bacterial diversity. In addition, the midgut of ticks capillary fed with the indigenous Micrococcus luteus (Gram-positive) and Pantoea sp. (Gram-negative) could not be colonized due to rapid and effective clearance of both bacterial taxa. CONCLUSIONS: The midgut microbiome of I. ricinus is diverse but low in abundance, with the exception of tick-borne pathogens and symbionts. The environment impacts the diversity of the tick midgut microbiome. Ingested extracellular environmental bacteria are rapidly eliminated and are not able to colonize the gut. We hypothesize that bacterial elimination triggered in the midgut of unfed adult females is critical to maintain low microbial levels during blood-feeding.

Zobrazit více v PubMed

Gusmão DS, Santos AV, Marini DC, Bacci M, Berbert-Molina MA, Lemos FJA. Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. Acta Trop. 2010;115:275–81. doi: 10.1016/j.actatropica.2010.04.011. PubMed DOI

Kent M, Davis JR, Beier JC, Pumpuni CB, Demaio J. Bacterial population dynamics in three Anopheline species: the impact on Plasmodium sporogonic development. Am J Trop Med Hyg. 1996;54:214–218. doi: 10.4269/ajtmh.1996.54.214. PubMed DOI

Oliveira JHM, Gonçalves RLS, Lara FA, Dias FA, Gandara ACP, Menna-Barreto RFS, et al. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathog. 2011;7:e1001320. doi: 10.1371/journal.ppat.1001320. PubMed DOI PMC

Volf P, Kiewegová A, Nemec A. Bacterial colonisation in the gut of Phlebotomus duboscqi (Diptera: Psychodidae): transtadial passage and the role of female diet. Folia Parasitol (Praha) 2002;49:73–77. doi: 10.14411/fp.2002.014. PubMed DOI

Dillon RJ, Dillon VM. The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol. 2004;49:71–92. doi: 10.1146/annurev.ento.49.061802.123416. PubMed DOI

Saab SA, Dohna Hz, Nilsson LKJ, Onorati P, Nakhleh J, Terenius O, et al. The environment and species affect gut bacteria composition in laboratory co-cultured Anopheles gambiae and Aedes albopictus mosquitoes. Sci Rep. 2020;10:3352. doi: 10.1038/s41598-020-60075-6. PubMed DOI PMC

Muturi EJ, Njoroge TM, Dunlap C, Cáceres CE. Blood meal source and mixed blood-feeding influence gut bacterial community composition in Aedes aegypti. Parasit Vectors. 2021;14:83. doi: 10.1186/s13071-021-04579-8. PubMed DOI PMC

Azambuja P, Garcia ES, Ratcliffe NA. Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 2005;21:568–572. doi: 10.1016/j.pt.2005.09.011. PubMed DOI

Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against Malaria parasites. PLoS Pathog. 2009;5:e1000423. doi: 10.1371/journal.ppat.1000423. PubMed DOI PMC

Bonnet SI, Binetruy F, Hernández-Jarguín AM, Duron O. The tick microbiome: Why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front Cell Infect Microbiol. 2017;7:236. doi: 10.3389/fcimb.2017.00236. PubMed DOI PMC

Greay TL, Gofton AW, Paparini A, Ryan UM, Oskam CL, Irwin PJ. Recent insights into the tick microbiome gained through next-generation sequencing. Parasit Vectors. 2018;11:1–14. doi: 10.1186/s13071-017-2573-y. PubMed DOI PMC

Stewart PE, Bloom ME. Sharing the ride: Ixodes scapularis symbionts and their interactions. Front Cell Infect Microbiol. 2020;10:142. doi: 10.3389/fcimb.2020.00142. PubMed DOI PMC

De La Fuente J, Estrada-Pena A, Venzal JM, Kocan KM, Sonenshine DE. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci. 2008;13(18):6938–6946. doi: 10.2741/3200. PubMed DOI

Kurokawa C, Lynn GE, Pedra JHF, Pal U, Narasimhan S, Fikrig E. Interactions between Borrelia burgdorferi and ticks. Nat Rev Microbiol Nature Res. 2020;18:587–600. doi: 10.1038/s41579-020-0400-5. PubMed DOI PMC

Abraham NM, Liu L, Jutras BL, Yadav AK, Narasimhan S, Gopalakrishnan V, et al. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc Natl Acad Sci USA. 2017;114:E781–90. doi: 10.1073/pnas.1613422114. PubMed DOI PMC

Narasimhan S, Rajeevan N, Liu L, Zhao YO, Heisig J, Pan J, et al. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host Microbe. 2014;15:58–71. doi: 10.1016/j.chom.2013.12.001. PubMed DOI PMC

Pollet T, Sprong H, Lejal E, Krawczyk AI, Moutailler S, Cosson JF, et al. The scale affects our view on the identification and distribution of microbial communities in ticks. Parasit Vectors. 2020;13:36. doi: 10.1186/s13071-020-3908-7. PubMed DOI PMC

Andreotti R, De León AAP, Dowd SE, Guerrero FD, Bendele KG, Scoles GA. Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol. 2011;11:6. doi: 10.1186/1471-2180-11-6. PubMed DOI PMC

Zhang XL, Deng YP, Yang T, Li LY, Cheng TY, Liu GH, et al. Metagenomics of the midgut microbiome of Rhipicephalus microplus from China. Parasit Vectors. 2020;15:48. doi: 10.1186/s13071-022-05161-6. PubMed DOI PMC

Zolnik CP, Prill RJ, Falco RC, Daniels TJ, Kolokotronis SO. Microbiome changes through ontogeny of a tick pathogen vector. Mol Ecol. 2016;25:4963–4977. doi: 10.1111/mec.13832. PubMed DOI

Clayton KA, Gall CA, Mason KL, Scoles GA, Brayton KA. The characterization and manipulation of the bacterial microbiome of the Rocky Mountain wood tick, Dermacentor andersoni. Parasit Vectors. 2015;8:632. doi: 10.1186/s13071-015-1245-z. PubMed DOI PMC

Gall CA, Reif KE, Scoles GA, Mason KL, Mousel M, Noh SM, et al. The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. ISME J. 2016;10:1846–1855. doi: 10.1038/ismej.2015.266. PubMed DOI PMC

Duan DY, Liu GH, Cheng TY. Microbiome analysis of the saliva and midgut from partially or fully engorged female adult Dermacentor silvarum ticks in China. Exp Appl Acarol. 2020;80:543–58. doi: 10.1007/s10493-020-00478-2. PubMed DOI

Budachetri K, Gaillard D, Williams J, Mukherjee N, Karim S. A snapshot of the microbiome of Amblyomma tuberculatum ticks infesting the gopher tortoise, an endangered species. Ticks Tick-Borne Dis. 2016;7:1225–1229. doi: 10.1016/j.ttbdis.2016.07.010. PubMed DOI PMC

Egyed L, Makrai L. Cultivable internal bacterial flora of ticks isolated in Hungary. Exp Appl Acarol. 2014;63:107–122. doi: 10.1007/s10493-013-9762-y. PubMed DOI

Murrell A, Dobson SJ, Yang X, Lacey E, Barker SC. A survey of bacterial diversity in ticks, lice and fleas from Australia. Parasitol Res. 2003;89:326–334. doi: 10.1007/s00436-002-0722-4. PubMed DOI

Rousseau R, Vanwambeke SO, Boland C, Mori M. The isolation of culturable bacteria in Ixodes ricinus ticks of a belgian peri-urban forest uncovers opportunistic bacteria potentially important for public health. Int J Environ Res Public Health. 2021;18:12134. doi: 10.3390/ijerph182212134. PubMed DOI PMC

Choubdar N, Karimian F, Koosha M, Oshaghi MA. An integrated overview of the bacterial flora composition of Hyalomma anatolicum, the main vector of cchf. PLoS Negl Trop Dis. 2021;15:1–15. doi: 10.1371/journal.pntd.0009480. PubMed DOI PMC

Loong SK, Lim FS, Khoo JJ, Lee HY, Suntharalingam C, Ishak SN, et al. Culturable pathogenic bacteria in ticks parasitizing farm animals and rodents in Malaysia. Trop Biomed. 2020;37:803–811. doi: 10.47665/tb.37.3.803. PubMed DOI

Rudolf I, Mendel J, Šikutová S, Švec P, Masaříková J, Nováková D, et al. 16S rRNA gene-based identification of cultured bacterial flora from host-seeking Ixodes ricinus, Dermacentor reticulatus and Haemaphysalis concinna ticks, vectors of vertebrate pathogens. Folia Microbiol (Praha) 2009;54:419–428. doi: 10.1007/s12223-009-0059-9. PubMed DOI

Segura JA, Isaza JP, Botero LE, Alzate JF, Gutiérrez LA. Assessment of bacterial diversity of Rhipicephalus microplus ticks from two livestock agroecosystems in Antioquia, Colombia. PLoS ONE. 2020;15:1–18. PubMed PMC

Guizzo MG, Neupane S, Kucera M, Perner J, Frantová H, da Silva Vaz I, et al. Poor unstable midgut microbiome of hard ticks contrasts with abundant and stable monospecific microbiome in ovaries. Front Cell Infect Microbiol. 2020;10:211. doi: 10.3389/fcimb.2020.00211. PubMed DOI PMC

Maldonado-Ruiz LP, Neupane S, Park Y, Zurek L. The bacterial community of the lone star tick (Amblyomma americanum) Parasit Vectors. 2021;14:49. doi: 10.1186/s13071-020-04550-z. PubMed DOI PMC

Eichler S, Schaub GA. Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Exp Parasitol. 2002;100:17–27. doi: 10.1006/expr.2001.4653. PubMed DOI

Lejal E, Chiquet J, Aubert J, Robin S, Estrada-Peña A, Rue O, et al. Temporal patterns in Ixodes ricinus microbial communities: an insight into tick-borne microbe interactions. Microbiome. 2021;9:153. doi: 10.1186/s40168-021-01051-8. PubMed DOI PMC

Bonnet SI, Pollet T. Update on the intricate tango between tick microbiomes and tick-borne pathogens. Parasite Immunol. 2021;43:12813. doi: 10.1111/pim.12813. PubMed DOI

Narasimhan S, Swei A, Abouneameh S, Pal U, Pedra JHF, Fikrig E. Grappling with the tick microbiome. Trends Parasitol. 2021;37:722–733. doi: 10.1016/j.pt.2021.04.004. PubMed DOI PMC

Hoffmann A, Fingerle V, Noll M. Analysis of tick surface decontamination methods. Microorganisms. 2020;8:1–16. doi: 10.3390/microorganisms8070987. PubMed DOI PMC

Binetruy F, Dupraz M, Buysse M, Duron O. Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasit Vectors. 2019;12:268. doi: 10.1186/s13071-019-3517-5. PubMed DOI PMC

Syrova E, Kohoutova L, Dolejska M, Papezikova I, Kutilova I, Cizek A, et al. Antibiotic resistance and virulence factors in mesophilic Aeromonas spp. from Czech carp fisheries. J Appl Microbiol. 2018;125:1702–1713. doi: 10.1111/jam.14075. PubMed DOI

Neupane S, Modry D, Pafčo B, Zurek L. Bacterial community of the digestive tract of the European Medicinal Leech (Hirudo verbana) from the Danube River. Microb Ecol. 2019;77:1085–1090. doi: 10.1007/s00248-019-01349-z. PubMed DOI

R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2019.

McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC

Oksanen J, Guillaume BF, Friendly M, Kindt R, Legendre P, et al. Vegan: Community Ecology Package. 2.5-3. 2018.

Paradis E, Schliep K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI

Wickham H. Package ‘ggplot2’: elegant graphics for data analysis. Springer-Verlag New York. 2016.

Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–59. doi: 10.1038/nmeth.2276. PubMed DOI PMC

Burešová V, Franta Z, Kopáček P. A comparison of Chryseobacterium indologenes pathogenicity to the soft tick Ornithodoros moubata and hard tick Ixodes ricinus. J Invertebr Pathol. 2006;93:96–104. doi: 10.1016/j.jip.2006.05.006. PubMed DOI

Ross BD, Hayes B, Radey MC, Lee X, Josek T, Bjork J, et al. Ixodes scapularis does not harbor a stable midgut microbiome. ISME J. 2018;12:2596–2607. doi: 10.1038/s41396-018-0161-6. PubMed DOI PMC

Hönig V, Svec P, Halas P, Vavruskova Z, Tykalova H, Kilian P, et al. Ticks and tick-borne pathogens in South Bohemia (Czech Republic)—Spatial variability in Ixodes ricinus abundance, Borrelia burgdorferi and tick-borne encephalitis virus prevalence. Ticks Tick-Borne Dis. 2015;6:559–567. doi: 10.1016/j.ttbdis.2015.04.010. PubMed DOI

Bonczek O, Žákovská A, Vargová L, Šerý O. Identification of Borrelia burgdorferi genospecies isolated from Ixodes ricinus ticks in the South Moravian region of the Czech Republic. Ann Agric Environ Med. 2015;22:637–641. doi: 10.5604/12321966.1185766. PubMed DOI

Adegoke A, Kumar D, Bobo C, Rashid MI, Durrani AZ, Sajid MS, et al. Tick-borne pathogens shape the native microbiome within tick vectors. Microorganisms. 2020;8:1299. doi: 10.3390/microorganisms8091299. PubMed DOI PMC

Macaluso KR, Sonenshine DE, Ceraul SM, Azad AF. Infection and transovarial transmission of rickettsiae in Dermacentor variabilis ticks acquired by artificial feeding. Vector-Borne Zoonotic Dis. 2001;1:45–53. doi: 10.1089/153036601750137660. PubMed DOI

Sonenshine DE, Ceraul SM, Hynes WE, Macaluso KR, Azad AF. Expression of defensin-like peptides in tick hemolymph and midgut in response to challenge with Borrelia burgdorferi, Escherichia coli and Bacillus subtilis. Exp Appl Acarol. 2002;28:127–134. doi: 10.1007/978-94-017-3526-1_9. PubMed DOI

Stojek NM, Dutkiewicz J. Studies on the occurrence of Gram-negative bacteria in ticks: Ixodes ricinus as a potential vector of Pasteurella. Ann Agric Environ Med. 2004;11:319–322. PubMed

Tomaso H, Otto P, Peters M, Süss J, Karger A, Schamoni H, et al. Francisella tularensis and other bacteria in hares and ticks in North Rhine-Westphalia (Germany) Ticks Tick-Borne Dis. 2018;9:325–329. doi: 10.1016/j.ttbdis.2017.11.007. PubMed DOI

Walterson AM, Stavrinides J. Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev. 2015;39:968–84. doi: 10.1093/femsre/fuv027. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace