The bacterial community of the lone star tick (Amblyomma americanum)

. 2021 Jan 14 ; 14 (1) : 49. [epub] 20210114

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33446262

Grantová podpora
R21 AI163423 NIAID NIH HHS - United States

Odkazy

PubMed 33446262
PubMed Central PMC7807426
DOI 10.1186/s13071-020-04550-z
PII: 10.1186/s13071-020-04550-z
Knihovny.cz E-zdroje

BACKGROUND: The lone star tick (Amblyomma americanum), an important vector of a wide range of human and animal pathogens, is very common throughout the East and Midwest of the USA. Ticks are known to carry non-pathogenic bacteria that may play a role in their vector competence for pathogens. Several previous studies using the high throughput sequencing (HTS) technologies reported the commensal bacteria in a tick midgut as abundant and diverse. In contrast, in our preliminary survey of the field collected adult lone star ticks, we found the number of culturable/viable bacteria very low. METHODS: We aimed to analyze the bacterial community of A. americanum by a parallel culture-dependent and a culture-independent approach applied to individual ticks. RESULTS: We analyzed 94 adult females collected in eastern Kansas and found that 60.8% of ticks had no culturable bacteria and the remaining ticks carried only 67.7 ± 42.8 colony-forming units (CFUs)/tick representing 26 genera. HTS of the 16S rRNA gene resulted in a total of 32 operational taxonomic units (OTUs) with the dominant endosymbiotic genera Coxiella and Rickettsia (> 95%). Remaining OTUs with very low abundance were typical soil bacterial taxa indicating their environmental origin. CONCLUSIONS: No correlation was found between the CFU abundance and the relative abundance from the culture-independent approach. This suggests that many culturable taxa detected by HTS but not by culture-dependent method were not viable or were not in their culturable state. Overall, our HTS results show that the midgut bacterial community of A. americanum is very poor without a core microbiome and the majority of bacteria are endosymbiotic.

Zobrazit více v PubMed

Brites-Neto J, Duarte KM, Martins TF. Tick-borne infections in human and animal population worldwide. Vet World. 2015;8(3):301–315. doi: 10.14202/vetworld.2015.301-315. PubMed DOI PMC

Dantas-Torres F, Chomel BB, Otranto D. Ticks and tick-borne diseases: a one health perspective. Trends Parasitol. 2012;28(10):437–446. doi: 10.1016/j.pt.2012.07.003. PubMed DOI

de la Fuente J, Estrada-Pena A, Venzal JM, Kocan KM, Sonenshine DE. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci. 2008;13:6938–6946. doi: 10.2741/3200. PubMed DOI

CDC. Map of established Amblyomma americanum tick populations in the United States 2019. 2019.

Tokarz R, Sameroff S, Tagliafierro T, Jain K, Williams SH, Cucura DM, et al. Identification of novel viruses in Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis ticks. mSphere. 2018;3(2):e00614–e00617. doi: 10.1128/mSphere.00614-17. PubMed DOI PMC

Sayler KA, Loftis AD, Beatty SK, Boyce CL, Garrison E, Clemons B, et al. Prevalence of tick-borne pathogens in host-seeking Amblyomma americanum (Acari: Ixodidae) and Odocoileus virginianus (Artiodactyla: Cervidae) in Florida. J Med Entomol. 2016;53(4):949–956. doi: 10.1093/jme/tjw054. PubMed DOI

Mixson TR, Campbell SR, Gill JS, Ginsberg HS, Reichard MV, Schulze TL, et al. Prevalence of Ehrlichia, Borrelia, and Rickettsial agents in Amblyomma americanum (Acari: Ixodidae) collected from nine states. J Med Entomol. 2006;43(6):1261–1268. doi: 10.1603/0022-2585(2006)43[1261:poebar]2.0.co;2. PubMed DOI

Crispell G, Commins SP, Archer-Hartman SA, Choudhary S, Dharmarajan G, Azadi P, et al. Discovery of alpha-gal-containing antigens in North American tick species believed to induce red meat allergy. Front Immunol. 2019;10:1664–3224 (Electronic):1–16; 10.3389/fimmu.2019.01056. PubMed PMC

Park YAO, Kim D, Boorgula GD, De Schutter KAO, Smagghe GAO, Šimo L, et al. Alpha-gal and cross-reactive carbohydrate determinants in the N-glycans of salivary glands in the lone star tick, Amblyomma americanum. Vaccines. 2019 doi: 10.3390/vaccines8010018. PubMed DOI PMC

Bonnet SI, Binetruy F, Hernandez-Jarguin AM, Duron O. The tick microbiome: why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front Cell Infect Microbiol. 2017;7:236. doi: 10.3389/fcimb.2017.00236. PubMed DOI PMC

de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Pena A, et al. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front Cell Infect Microbiol. 2017;7:114. doi: 10.3389/fcimb.2017.00114. PubMed DOI PMC

Narasimhan S, Fikrig E. Tick microbiome: the force within. Trends Parasitol. 2015;31(7):315–323. doi: 10.1016/j.pt.2015.03.010. PubMed DOI PMC

Clay K, Klyachko O, Grindle N, Civitello D, Oleske D, Fuqua C. Microbial communities and interactions in the lone star tick, Amblyomma americanum. Mol Ecol. 2008;17(19):4371–4381. doi: 10.1111/j.1365-294X.2008.03914.x. PubMed DOI

Heise SR, Elshahed MS, Little SE. Bacterial diversity in Amblyomma americanum (Acari: Ixodidae) with a focus on members of the genus Rickettsia. J Med Entomol. 2010;47(2):258–268. doi: 10.1603/me09197. PubMed DOI

Jasinskas A, Zhong J, Barbour AG. Highly prevalent Coxiella sp. bacterium in the tick vector Amblyomma americanum. Appl Environ Microbiol. 2007;73(1):334–336. doi: 10.1128/AEM.02009-06. PubMed DOI PMC

Klyachko O, Stein BD, Grindle N, Clay K, Fuqua C. Localization and visualization of a Coxiella-type symbiont within the lone star tick, Amblyomma americanum. Appl Environ Microbiol. 2007;73(20):6584. doi: 10.1128/AEM.00537-07. PubMed DOI PMC

Narasimhan S, Rajeevan N, Liu L, Zhao YO, Heisig J, Pan J, et al. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host Microbe. 2014;15(1):58–71. doi: 10.1016/j.chom.2013.12.001. PubMed DOI PMC

Trout Fryxell RT, DeBruyn JM. Correction: The microbiome of Ehrlichia-infected and uninfected lone star ticks (Amblyomma americanum) PLoS ONE. 2016;11(5):e0155559. doi: 10.1371/journal.pone.0155559. PubMed DOI PMC

Williams-Newkirk AJ, Rowe LA, Mixson-Hayden TR, Dasch GA. Characterization of the bacterial communities of life stages of free living lone star ticks (Amblyomma americanum) PLoS ONE. 2014;9(7):e102130. doi: 10.1371/journal.pone.0102130. PubMed DOI PMC

Menchaca AC, Visi DK, Strey OF, Teel PD, Kalinowski K, Allen MS, et al. Preliminary assessment of microbiome changes following blood-feeding and survivorship in the Amblyomma americanum nymph-to-adult transition using semiconductor sequencing. PLoS ONE. 2013;8(6):e67129. doi: 10.1371/journal.pone.0067129. PubMed DOI PMC

Greay TL, Gofton AW, Paparini A, Ryan UM, Oskam CL, Irwin PJ. Recent insights into the tick microbiome gained through next-generation sequencing. Parasites Vectors. 2018;11(1):12. doi: 10.1186/s13071-017-2550-5. PubMed DOI PMC

Hernandez-Jarguin A, Diaz-Sanchez S, Villar M, de la Fuente J. Integrated metatranscriptomics and metaproteomics for the characterization of bacterial microbiota in unfed Ixodes ricinus. Ticks Tick Borne Dis. 2018;9(5):1241–1251. doi: 10.1016/j.ttbdis.2018.04.020. PubMed DOI

Turner S, Pryer KM, Miao VP, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol. 1999;46(4):327–338. doi: 10.1111/j.1550-7408.1999.tb04612.x. PubMed DOI

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):0022–2836. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–5267. doi: 10.1128/AEM.00062-07. PubMed DOI PMC

Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, et al. The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 2005;33:1362–4962. doi: 10.1093/nar/gki254. PubMed DOI PMC

Yarza P, Caporaso CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS. 2011;108:4516–4522. doi: 10.1073/pnas.1000080107. PubMed DOI PMC

Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: Open-source, platform-independent, community-supported software for sescribing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537. doi: 10.1128/AEM.01541-09. PubMed DOI PMC

Yilmaz P, Parfrey LW, Yarza P. The SILVA and “All-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–D648. doi: 10.1093/nar/gkt1209. PubMed DOI PMC

Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970;48(3):0022–2836. doi: 10.1016/0022-2836(70)90057-4. PubMed DOI

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27(16):1367–4811. doi: 10.1093/bioinformatics/btr381. PubMed DOI PMC

Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-iltering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10(1):57–59. doi: 10.1038/nmeth.2276. PubMed DOI PMC

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1537–1719. PubMed PMC

Strand MR. Chapeter 11 The gut microbiota of mosquitoes diversity and function. In: Arthropod vector: controller of disease transmission, vol. 1. London: Academic Press; 2017. p. 185–99.

Ross BD, Hayes B, Radey MC, Lee X, Josek T, Bjork J, et al. Ixodes scapularis does not harbor a stable midgut microbiome. ISME J. 2018;12(11):2596–2607. doi: 10.1038/s41396-018-0161-6. PubMed DOI PMC

Binetruy F, Dupraz M, Buysse M, Duron O. Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasites Vectors. 2019;12(1):268. doi: 10.1186/s13071-019-3517-5. PubMed DOI PMC

Maldonado-Ruiz LP, Park Y, Zurek L. Liquid water intake of the lone star tick, Amblyomma americanum: implications for tick survival and management. 2020. https://europepmc.org/articles/PMC7138852. PubMed PMC

Kim D, Maldonado-Ruiz P, Zurek L, Park Y. Water absorption through salivary gland type I acini in the blacklegged tick Ixodes scapularis. PeerJ. 2017;5:e3984. doi: 10.7717/peerj.3984. PubMed DOI PMC

Kim D, Simo L, Vancova M, Urban J, Park Y. Neural and endocrine regulation of osmoregulatory organs in tick: recent discoveries and implications. Gen Comp Endocrinol. 2019;278:42–49. doi: 10.1016/j.ygcen.2018.08.004. PubMed DOI

Aivelo T, Norberg A, Tschirren B. Bacterial microbiota composition of Ixodes ricinus ticks: the role of environmental variation, tick characteristics and microbial interactions. PeerJ. 2019;2019(2167–8359 (Print)):1–25. PubMed PMC

Yang X, Smith AA, Williams MS, Pal U. A dityrosine network mediated by dual oxidase and peroxidase inluences the persistence of Lyme disease pathogens within the vector. J Biol Chem. 2014;289(18):12813–12822. doi: 10.1074/jbc.M113.538272. PubMed DOI PMC

Stewart PE, Bloom ME. Sharing the ride: Ixodes scapularis symbionts and their interactions. Front Cell Infect Microbiol. 2020;10:142. doi: 10.3389/fcimb.2020.00142. PubMed DOI PMC

Lagier J-C, Dubourg G, Million M, Cadoret F, Bilen M, Fenollar F, et al. Culturing the human microbiota and culturomics. Nat Rev Microbiol. 2018;16(9):540–50. doi: 10.1038/s41579-018-0041-0. PubMed DOI

Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol. 2014;5(1664-302X (Print)):1–20. PubMed PMC

Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10:1–11. doi: 10.1038/s41467-019-13036-1. PubMed DOI PMC

García-Bayona L, García-Bayona LE. Bacterial antagonism in host-associated microbial communities. Science. 2018;361(6408):eaat2456. doi: 10.1126/science.aat2456. PubMed DOI

Chou S, Daugherty MD, Peterson SB, Biboy J, Yang Y, Jutras BL. Transferred interbacterial antagonism genes augment eukaryotic innate immune function. Nature. 2014;518(1476–4687 (Electronic)):98–101. PubMed PMC

Hernandez-Jarguin A, Diaz-Sanchez S, Villar M, de la Fuente J. Integrated metatranscriptomics and metaproteomics for the characterization of bacterial microbiota in unfed Ixodes ricinus. Ticks Tick Borne Dis. 2018;9(5):1877–9603. doi: 10.1016/j.ttbdis.2018.04.020. PubMed DOI

Thapa S, Zhang Y, Allen MS. Effects of temperature on bacterial microbiome composition in ticks. MicrobiologyOpen. 2019;8(5):e00719. doi: 10.1002/mbo3.719. PubMed DOI PMC

Estrada-Peña A, Cabezas-Cruz A, Pollet T, Vayssier-Taussat M, Cosson J-F. High throughput sequencing and network analysis disentangle the microbial communities of ticks and hosts within and between ecosystems. Fron Cell Infect Microbiol. 2018;8:236. doi: 10.3389/fcimb.2018.00236. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...