Liquid water intake of the lone star tick, Amblyomma americanum: Implications for tick survival and management
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
R21 AI163423
NIAID NIH HHS - United States
PubMed
32265527
PubMed Central
PMC7138852
DOI
10.1038/s41598-020-63004-9
PII: 10.1038/s41598-020-63004-9
Knihovny.cz E-resources
- MeSH
- Tick Infestations parasitology MeSH
- Ixodidae drug effects physiology MeSH
- Drinking MeSH
- Salts administration & dosage toxicity MeSH
- Feeding Behavior MeSH
- Water administration & dosage MeSH
- Desiccation MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Salts MeSH
- Water MeSH
Ixodid ticks are ectoparasites that feed exclusively on blood as their source of nutrients. Although ticks spend most of their life off the host, until now it has been assumed that the blood and the water vapor are the only sources of water to maintain water balance and prevent desiccation. Here we report for the first time that adult lone star ticks, Amblyomma americanum, also actively drink nutrient-free water, which greatly increases their survival. The volume of ingested water is greater in females than males (0.55 ± 0.06 vs 0.44 ± 0.07 µl) and most likely due to differences in tick size. Water uptake occurs through mouthparts and it can be later observed in the salivary glands and the midgut. We also exploited this behavior by adding a variety of inorganic compounds and microorganisms to water. Addition of inorganic salts to drinking water such as KH2PO4 + NaCl+KNO3 resulted in 100% tick mortality within 3 days. As a proof of concept for using the water drinking as a delivery route of toxic reagents for ticks, we also show that adding Pseudomonas aeruginosa to drinking water quickly leads to tick death. This tick behavior can be exploited to target important physiological systems, which would make ticks vulnerable to dehydration and microbial dysbiosis.
Department of Chemistry and Biochemistry Mendel University Zemedelska 1 Brno 613 00 Czech Republic
Department of Entomology Kansas State University 123 West Waters Hall Manhattan KS 66506 USA
See more in PubMed
CDC. Tickborne diseases in the United States: A reference manual for healthcare providers. (2018).
Williams-Newkirk AJ, Rowe LA, Mixson-Hayden TR, Dasch GA. Characterization of the bacterial communities of life stages of free living lone star ticks (Amblyomma americanum) PLoS One. 2014;9:e102130. doi: 10.1371/journal.pone.0102130. PubMed DOI PMC
de la Fuente J, Estrada-Pena A, Venzal JM, Kocan KM, Sonenshine DE. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci. 2008;13:6938–6946. doi: 10.2741/3200. PubMed DOI
Jongejan F, Uilenberg G. The global importance of ticks. Parasitology. 2004;129(Suppl):S3–14. doi: 10.1017/S0031182004005967. PubMed DOI
Sonenshine, D. E. In Biology of ticks Vol. 1 (ed Sonenshine, D. E. and Roe, R. M.) Ch. 3, 51–66 (1991).
Needham, G. R. A. T., P.D. In Morphology, physiology and behavioral biology of ticks (ed J.R. Sauer and J.A. Hair) Ch. 5, 100–151 (Ellis horwood limited, 1986).
Norval RA. Studies on the ecology of the tick Amblyomma hebraeum Koch in the eastern Cape province of South Africa. II. Survival and development. J Parasitol. 1977;63:740–747. doi: 10.2307/3279586. PubMed DOI
Sonenshine, D. E. In Biology of Ticks Vol. 1 (eds. Sonenshine, D. E. and Roe, R. M.) Ch. 22, 398–412 (1991).
Sauer JR, Hair JA. Water balance in the lone star tick (Acarina: Ixodidae): the effects of relative humidity and temperature on weight changes and total water content. J Med Entomol. 1971;8:479–485. doi: 10.1093/jmedent/8.5.479. PubMed DOI
Wharton GW, A. RAG. Water vapor exchange kinetics in insects and acarines. Annual Review of Entomology. 1978;23:309–328. doi: 10.1146/annurev.en.23.010178.001521. DOI
Freda, T. J. N. & G.R. Water exchange kinetics of the lone star tick Amblyomma americanum. Acarology VI/editors D.A. Griffiths and C.E. Bowman, 358–364 (1984).
Rudolph D, Knulle W. Site and mechanism of water vapour uptake from the atmosphere in ixodid ticks. Nature. 1974;249:84–85. doi: 10.1038/249084a0. PubMed DOI
Hsu MH, Sauer JR. Sodium, Potassium, Chloride and water balance in the feeding lone star tick, Amblyomma americanum (Linneaus) (Acarina: Ixodidae) Journal of the Kansas Entomological Society. 1974;47:536–537.
Meyer-Konig A, Zahler M, Gothe R. Studies on survival and water balance of unfed adult Dermacentor marginatus and D. reticulatus ticks (Acari: Ixodidae) Exp Appl Acarol. 2001;25:993–1004. doi: 10.1023/A:1020671700806. PubMed DOI
Kahl O, Alidousti I. Bodies of liquid water as a source of water gain for Ixodes ricinus ticks (Acari: Ixodidae) Experimental & Applied Acarology. 1997;21:731–746. doi: 10.1023/a:1018469021161. DOI
Lees AD. The water balance in Ixodes ricinus L. and certain other species of ticks. Parasitology. 1946;37:1–20. doi: 10.1017/S0031182000013093. PubMed DOI
Kim D, Maldonado-Ruiz P, Zurek L, Park Y. Water absorption through salivary gland type I acini in the blacklegged tick, Ixodes scapularis. PeerJ. 2017;5:e3984. doi: 10.7717/peerj.3984. PubMed DOI PMC
Splisteser HAT. U. Untersuchungen zu faunistischen Besonderheiten und zur Aktivitat von Dermacentor nuttalli in der Mongolischen Volksrepublik. Monatshefte Veterinarmedizin Monatshefte veterinarmedizin. 1986;41:126–128.
Londt JG, Whitehead GB. Ecological studies of larval ticks in South Africa (Acarina: Ixodidae) Parasitology. 1972;65:469–490. doi: 10.1017/S0031182000044097. PubMed DOI
Wilkinson, P. R. Observations on the sensory physiology and behaviour of larvae of the cattle tick, Boophilus Microplus (Can.) (Ixodidae). Australian Journal of Zoology - AUST J ZOOL1, 10.1071/ZO9530345 (1953).
Jager, K. J., van Dijk Pc Fau - Zoccali, C., Zoccali C Fau - Dekker, F. W. & Dekker, F. W. The analysis of survival data: the Kaplan-Meier method. PubMed
CDC. Map of established Amblyomma americanum tick populations in the United States 2019. (2019).
Springer YP, Jarnevich CS, Barnett DT, Monaghan AJ, Eisen RJ. Modeling the present and future geographic distribution of the lone star tick, Amblyomma americanum (Ixodida: Ixodidae), in the continental United States. Am J Trop Med Hyg. 2015;93:875–890. doi: 10.4269/ajtmh.15-0330. PubMed DOI PMC
Raghavan RK, Peterson AT, Cobos ME, Ganta R, Foley D. Current and future distribution of the lone star tick, Amblyomma americanum (L.) (Acari: Ixodidae) in North America. PLoS One. 2019;14:e0209082. doi: 10.1371/journal.pone.0209082. PubMed DOI PMC
Lees AD. Passive and active water exchange through the cuticle of ticks. Discussions of the Faraday Society. 1948;3:187–192. doi: 10.1039/DF9480300187. DOI
Knulle W, Devine TL. Evidence for active and passive components of sorption of atmospheric water vapour by larvae of the tick Dermacentor variabilis. J Insect Physiol. 1972;18:1653–1664. doi: 10.1016/0022-1910(72)90095-9. PubMed DOI
Kim D, Simo L, Vancova M, Urban J, Park Y. Neural and endocrine regulation of osmoregulatory organs in tick: Recent discoveries and implications. Gen Comp Endocrinol. 2019;278:42–49. doi: 10.1016/j.ygcen.2018.08.004. PubMed DOI
Kim D, Urban J, Boyle DL, Park Y. Multiple functions of Na/K-ATPase in dopamine-induced salivation of the Blacklegged tick, Ixodes scapularis. Sci Rep. 2016;6:21047. doi: 10.1038/srep21047. PubMed DOI PMC
Virkki LV, Biber J, Murer H, Forster IC. Phosphate transporters: a tale of two solute carrier families. American Journal of Physiology-Renal Physiology. 2007;293:F643–F654. doi: 10.1152/ajprenal.00228.2007. PubMed DOI
The bacterial community of the lone star tick (Amblyomma americanum)