Neuroprotective Effect of 2-(Benzyloxy)arylureas Is Not Related to CypD Inhibition nor Suppression of mPTP Opening

. 2024 Oct 10 ; 15 (10) : 1756-1763. [epub] 20240905

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39411525

Cyclophilin D (CypD) is a mitochondrial enzyme widely accepted as a regulator of the mitochondrial permeability transition pore (mPTP). Excessive opening of mPTP is associated with mitochondrial dysfunction and the development of various diseases; thus, suppression of mPTP opening through CypD inhibition presents a promising therapeutic approach. However, only a limited number of selective CypD inhibitors are currently available. In this study, 10 derivatives of 2-(benzyloxy)arylurea similar or identical to previously published CypD/mPTP inhibitors were synthesized. Unlike the original reports that assessed the opening of mPTP at the cellular level, the compounds were tested directly on the purified CypD enzyme to validate their putative mechanism of action. Additionally, the effect of the selected compounds was tested on isolated mitochondria. The obtained results show that the compounds are only weak inhibitors of CypD and mPTP opening, which is in contrast to previous conclusions drawn from the unspecific cellular JC-1 assay.

Zobrazit více v PubMed

Bernardi P.; Carraro M.; Lippe G. The Mitochondrial Permeability Transition: Recent Progress and Open Questions. FEBS J. 2022, 289 (22), 7051–7074. 10.1111/febs.16254. PubMed DOI PMC

Bernardi P.; Gerle C.; Halestrap A. P.; Jonas E. A.; Karch J.; Mnatsakanyan N.; Pavlov E.; Sheu S.-S.; Soukas A. A. Identity, Structure, and Function of the Mitochondrial Permeability Transition Pore: Controversies, Consensus, Recent Advances, and Future Directions. Cell Death Differ. 2023, 30 (8), 1869–1885. 10.1038/s41418-023-01187-0. PubMed DOI PMC

Bonora M.; Giorgi C.; Pinton P. Molecular Mechanisms and Consequences of Mitochondrial Permeability Transition. Nat. Rev. Mol. Cell Biol. 2022, 23 (4), 266–285. 10.1038/s41580-021-00433-y. PubMed DOI

Nakagawa T.; Shimizu S.; Watanabe T.; Yamaguchi O.; Otsu K.; Yamagata H.; Inohara H.; Kubo T.; Tsujimoto Y. Cyclophilin D-Dependent Mitochondrial Permeability Transition Regulates Some Necrotic but Not Apoptotic Cell Death. Nature 2005, 434 (7033), 652–658. 10.1038/nature03317. PubMed DOI

Baines C. P.; Kaiser R. A.; Purcell N. H.; Blair N. S.; Osinska H.; Hambleton M. A.; Brunskill E. W.; Sayen M. R.; Gottlieb R. A.; Dorn G. W.; Robbins J.; Molkentin J. D. Loss of Cyclophilin D Reveals a Critical Role for Mitochondrial Permeability Transition in Cell Death. Nature 2005, 434 (7033), 658–662. 10.1038/nature03434. PubMed DOI

Palma E.; Tiepolo T.; Angelin A.; Sabatelli P.; Maraldi N. M.; Basso E.; Forte M. A.; Bernardi P.; Bonaldo P. Genetic Ablation of Cyclophilin D Rescues Mitochondrial Defects and Prevents Muscle Apoptosis in Collagen VI Myopathic Mice. Hum. Mol. Genet. 2009, 18 (11), 2024–2031. 10.1093/hmg/ddp126. PubMed DOI

Benek O.; Aitken L.; Hroch L.; Kuca K.; Gunn-Moore F.; Musilek K. A Direct Interaction Between Mitochondrial Proteins and Amyloid-Beta Peptide and Its Significance for the Progression and Treatment of Alzheimer’s Disease. Curr. Med. Chem. 2015, 22 (9), 1056–1085. 10.2174/0929867322666150114163051. PubMed DOI

Valasani K. R.; Sun Q.; Fang D.; Zhang Z.; Yu Q.; Guo Y.; Li J.; Roy A.; ShiDu Yan S. Identification of a Small Molecule Cyclophilin D Inhibitor for Rescuing Aβ-Mediated Mitochondrial Dysfunction. ACS Med. Chem. Lett. 2016, 7 (3), 294–299. 10.1021/acsmedchemlett.5b00451. PubMed DOI PMC

Shore E. R.; Awais M.; Kershaw N. M.; Gibson R. R.; Pandalaneni S.; Latawiec D.; Wen L.; Javed M. A.; Criddle D. N.; Berry N.; O’Neill P. M.; Lian L.-Y.; Sutton R. Small Molecule Inhibitors of Cyclophilin D To Protect Mitochondrial Function as a Potential Treatment for Acute Pancreatitis. J. Med. Chem. 2016, 59 (6), 2596–2611. 10.1021/acs.jmedchem.5b01801. PubMed DOI

Haleckova A.; Benek O.; Zemanová L.; Dolezal R.; Musilek K. Small-Molecule Inhibitors of Cyclophilin D as Potential Therapeutics in Mitochondria-Related Diseases. Med. Res. Rev. 2022, 42 (5), 1822–1855. 10.1002/med.21892. PubMed DOI

Kim J.; Lee J.; Moon B.; Mook-Jung I.; Nam G.; Keum G.; Pae A. N.; Choo H. Pyridyl-Urea Derivatives as Blockers of Aβ-Induced mPTP Opening for Alzheimer’s Disease. Bull. Korean Chem. Soc. 2012, 33 (11), 3887–3888. 10.5012/bkcs.2012.33.11.3887. DOI

Kim Y. S.; Jung S. h.; Park B.-G.; Ko M. K.; Jang H.-S.; Choi K.; Baik J.-H.; Lee J.; Lee J. K.; Pae A. N.; Cho Y. S.; Min S.-J. Synthesis and Evaluation of Oxime Derivatives as Modulators for Amyloid Beta-Induced Mitochondrial Dysfunction. Eur. J. Med. Chem. 2013, 62, 71–83. 10.1016/j.ejmech.2012.12.033. PubMed DOI

Jung S. H.; Choi K.; Pae A. N.; Lee J. K.; Choo H.; Keum G.; Cho Y. S.; Min S.-J. Facile Diverted Synthesis of Pyrrolidinyl Triazoles Using Organotrifluoroborate: Discovery of Potential mPTP Blockers. Org. Biomol. Chem. 2014, 12 (47), 9674–9682. 10.1039/C4OB01967A. PubMed DOI

Elkamhawy A.; Lee J.; Park B.-G.; Park I.; Pae A. N.; Roh E. J. Novel Quinazoline-Urea Analogues as Modulators for Aβ-Induced Mitochondrial Dysfunction: Design, Synthesis, and Molecular Docking Study. Eur. J. Med. Chem. 2014, 84, 466–475. 10.1016/j.ejmech.2014.07.027. PubMed DOI

Park J.; Elkamhawy A.; Hassan A. H. E.; Pae A. N.; Lee J.; Paik S.; Park B.-G.; Roh E. J. Synthesis and Evaluation of New Pyridyl/Pyrazinyl Thiourea Derivatives: Neuroprotection against Amyloid-β-Induced Toxicity. Eur. J. Med. Chem. 2017, 141, 322–334. 10.1016/j.ejmech.2017.09.043. PubMed DOI

Elkamhawy A.; Park J.; Hassan A. H. E.; Ra H.; Pae A. N.; Lee J.; Park B.-G.; Moon B.; Park H.-M.; Roh E. J. Discovery of 1-(3-(Benzyloxy)Pyridin-2-Yl)-3-(2-(Piperazin-1-Yl)Ethyl)Urea: A New Modulator for Amyloid Beta-Induced Mitochondrial Dysfunction. Eur. J. Med. Chem. 2017, 128, 56–69. 10.1016/j.ejmech.2016.12.057. PubMed DOI

Elkamhawy A.; Park J.; Hassan A. H. E.; Pae A. N.; Lee J.; Park B.-G.; Roh E. J. Synthesis and Evaluation of 2-(3-Arylureido)Pyridines and 2-(3-Arylureido)Pyrazines as Potential Modulators of Aβ-Induced Mitochondrial Dysfunction in Alzheimer’s Disease. Eur. J. Med. Chem. 2018, 144, 529–543. 10.1016/j.ejmech.2017.12.045. PubMed DOI

Elkamhawy A.; Park J.; Hassan A. H. E.; Pae A. N.; Lee J.; Paik S.; Park B.-G.; Roh E. J. Pyrazinyl Ureas Revisited: 1-(3-(Benzyloxy)Pyrazin-2-Yl)-3-(3,4-Dichlorophenyl)Urea, a New Blocker of Aβ-Induced mPTP Opening for Alzheimer’s Disease. Eur. J. Med. Chem. 2018, 157, 268–278. 10.1016/j.ejmech.2018.07.068. PubMed DOI

Guichou J.-F.; Viaud J.; Mettling C.; Subra G.; Lin Y.-L.; Chavanieu A. Structure-Based Design, Synthesis, and Biological Evaluation of Novel Inhibitors of Human Cyclophilin A. J. Med. Chem. 2006, 49 (3), 900–910. 10.1021/jm050716a. PubMed DOI

Sivandzade F.; Bhalerao A.; Cucullo L. Analysis of the Mitochondrial Membrane Potential Using the Cationic JC-1 Dye as a Sensitive Fluorescent Probe. Bio Protoc. 2019, 9 (1), e3128-e312810.21769/BioProtoc.3128. PubMed DOI PMC

Ahmed-Belkacem A.; Colliandre L.; Ahnou N.; Nevers Q.; Gelin M.; Bessin Y.; Brillet R.; Cala O.; Douguet D.; Bourguet W.; Krimm I.; Pawlotsky J.-M.; Guichou J.-F. Fragment-Based Discovery of a New Family of Non-Peptidic Small-Molecule Cyclophilin Inhibitors with Potent Antiviral Activities. Nat. Commun. 2016, 7, 12777.10.1038/ncomms12777. PubMed DOI PMC

De Simone A.; Georgiou C.; Ioannidis H.; Gupta A. A.; Juarez-Jimenez J.; Doughty-Shenton D.; Blackburn E. A.; Wear M. A.; Richards J. P.; Barlow P. N.; Carragher N.; Walkinshaw M. D.; Hulme A. N.; Michel J. A Computationally Designed Binding Mode Flip Leads to a Novel Class of Potent Tri-Vector Cyclophilin Inhibitors. Chem. Sci. 2019, 10 (2), 542–547. 10.1039/C8SC03831G. PubMed DOI PMC

Grädler U.; Schwarz D.; Blaesse M.; Leuthner B.; Johnson T. L.; Bernard F.; Jiang X.; Marx A.; Gilardone M.; Lemoine H.; Roche D.; Jorand-Lebrun C. Discovery of Novel Cyclophilin D Inhibitors Starting from Three Dimensional Fragments with Millimolar Potencies. Bioorg. Med. Chem. Lett. 2019, 29 (23), 126717.10.1016/j.bmcl.2019.126717. PubMed DOI PMC

Zemanova L.; Vaskova M.; Schmidt M.; Roubalova J.; Haleckova A.; Benek O.; Musilek K. RNase T1 Refolding Assay for Determining Mitochondrial Cyclophilin D Activity: A Novel In Vitro Method Applicable in Drug Research and Discovery. Biochemistry 2020, 59 (17), 1680–1687. 10.1021/acs.biochem.9b01025. PubMed DOI

Gao K.; Oerlemans R.; Groves M. R. Theory and Applications of Differential Scanning Fluorimetry in Early-Stage Drug Discovery. Biophys. Rev. 2020, 12 (1), 85–104. 10.1007/s12551-020-00619-2. PubMed DOI PMC

Endlicher R.; Drahota Z.; Červinková Z. Modification of Calcium Retention Capacity of Rat Liver Mitochondria by Phosphate and Tert-Butyl Hydroperoxide. Physiol. Res. 2019, 68 (1), 59–65. 10.33549/physiolres.933912. PubMed DOI

Ali S. S.; Marcondes M.-C. G.; Bajova H.; Dugan L. L.; Conti B. Metabolic Depression and Increased Reactive Oxygen Species Production by Isolated Mitochondria at Moderately Lower Temperatures*. J. Biol. Chem. 2010, 285 (42), 32522–32528. 10.1074/jbc.M110.155432. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...