Neuroprotective Effect of 2-(Benzyloxy)arylureas Is Not Related to CypD Inhibition nor Suppression of mPTP Opening
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39411525
PubMed Central
PMC11472537
DOI
10.1021/acsmedchemlett.4c00353
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Cyclophilin D (CypD) is a mitochondrial enzyme widely accepted as a regulator of the mitochondrial permeability transition pore (mPTP). Excessive opening of mPTP is associated with mitochondrial dysfunction and the development of various diseases; thus, suppression of mPTP opening through CypD inhibition presents a promising therapeutic approach. However, only a limited number of selective CypD inhibitors are currently available. In this study, 10 derivatives of 2-(benzyloxy)arylurea similar or identical to previously published CypD/mPTP inhibitors were synthesized. Unlike the original reports that assessed the opening of mPTP at the cellular level, the compounds were tested directly on the purified CypD enzyme to validate their putative mechanism of action. Additionally, the effect of the selected compounds was tested on isolated mitochondria. The obtained results show that the compounds are only weak inhibitors of CypD and mPTP opening, which is in contrast to previous conclusions drawn from the unspecific cellular JC-1 assay.
Zobrazit více v PubMed
Bernardi P.; Carraro M.; Lippe G. The Mitochondrial Permeability Transition: Recent Progress and Open Questions. FEBS J. 2022, 289 (22), 7051–7074. 10.1111/febs.16254. PubMed DOI PMC
Bernardi P.; Gerle C.; Halestrap A. P.; Jonas E. A.; Karch J.; Mnatsakanyan N.; Pavlov E.; Sheu S.-S.; Soukas A. A. Identity, Structure, and Function of the Mitochondrial Permeability Transition Pore: Controversies, Consensus, Recent Advances, and Future Directions. Cell Death Differ. 2023, 30 (8), 1869–1885. 10.1038/s41418-023-01187-0. PubMed DOI PMC
Bonora M.; Giorgi C.; Pinton P. Molecular Mechanisms and Consequences of Mitochondrial Permeability Transition. Nat. Rev. Mol. Cell Biol. 2022, 23 (4), 266–285. 10.1038/s41580-021-00433-y. PubMed DOI
Nakagawa T.; Shimizu S.; Watanabe T.; Yamaguchi O.; Otsu K.; Yamagata H.; Inohara H.; Kubo T.; Tsujimoto Y. Cyclophilin D-Dependent Mitochondrial Permeability Transition Regulates Some Necrotic but Not Apoptotic Cell Death. Nature 2005, 434 (7033), 652–658. 10.1038/nature03317. PubMed DOI
Baines C. P.; Kaiser R. A.; Purcell N. H.; Blair N. S.; Osinska H.; Hambleton M. A.; Brunskill E. W.; Sayen M. R.; Gottlieb R. A.; Dorn G. W.; Robbins J.; Molkentin J. D. Loss of Cyclophilin D Reveals a Critical Role for Mitochondrial Permeability Transition in Cell Death. Nature 2005, 434 (7033), 658–662. 10.1038/nature03434. PubMed DOI
Palma E.; Tiepolo T.; Angelin A.; Sabatelli P.; Maraldi N. M.; Basso E.; Forte M. A.; Bernardi P.; Bonaldo P. Genetic Ablation of Cyclophilin D Rescues Mitochondrial Defects and Prevents Muscle Apoptosis in Collagen VI Myopathic Mice. Hum. Mol. Genet. 2009, 18 (11), 2024–2031. 10.1093/hmg/ddp126. PubMed DOI
Benek O.; Aitken L.; Hroch L.; Kuca K.; Gunn-Moore F.; Musilek K. A Direct Interaction Between Mitochondrial Proteins and Amyloid-Beta Peptide and Its Significance for the Progression and Treatment of Alzheimer’s Disease. Curr. Med. Chem. 2015, 22 (9), 1056–1085. 10.2174/0929867322666150114163051. PubMed DOI
Valasani K. R.; Sun Q.; Fang D.; Zhang Z.; Yu Q.; Guo Y.; Li J.; Roy A.; ShiDu Yan S. Identification of a Small Molecule Cyclophilin D Inhibitor for Rescuing Aβ-Mediated Mitochondrial Dysfunction. ACS Med. Chem. Lett. 2016, 7 (3), 294–299. 10.1021/acsmedchemlett.5b00451. PubMed DOI PMC
Shore E. R.; Awais M.; Kershaw N. M.; Gibson R. R.; Pandalaneni S.; Latawiec D.; Wen L.; Javed M. A.; Criddle D. N.; Berry N.; O’Neill P. M.; Lian L.-Y.; Sutton R. Small Molecule Inhibitors of Cyclophilin D To Protect Mitochondrial Function as a Potential Treatment for Acute Pancreatitis. J. Med. Chem. 2016, 59 (6), 2596–2611. 10.1021/acs.jmedchem.5b01801. PubMed DOI
Haleckova A.; Benek O.; Zemanová L.; Dolezal R.; Musilek K. Small-Molecule Inhibitors of Cyclophilin D as Potential Therapeutics in Mitochondria-Related Diseases. Med. Res. Rev. 2022, 42 (5), 1822–1855. 10.1002/med.21892. PubMed DOI
Kim J.; Lee J.; Moon B.; Mook-Jung I.; Nam G.; Keum G.; Pae A. N.; Choo H. Pyridyl-Urea Derivatives as Blockers of Aβ-Induced mPTP Opening for Alzheimer’s Disease. Bull. Korean Chem. Soc. 2012, 33 (11), 3887–3888. 10.5012/bkcs.2012.33.11.3887. DOI
Kim Y. S.; Jung S. h.; Park B.-G.; Ko M. K.; Jang H.-S.; Choi K.; Baik J.-H.; Lee J.; Lee J. K.; Pae A. N.; Cho Y. S.; Min S.-J. Synthesis and Evaluation of Oxime Derivatives as Modulators for Amyloid Beta-Induced Mitochondrial Dysfunction. Eur. J. Med. Chem. 2013, 62, 71–83. 10.1016/j.ejmech.2012.12.033. PubMed DOI
Jung S. H.; Choi K.; Pae A. N.; Lee J. K.; Choo H.; Keum G.; Cho Y. S.; Min S.-J. Facile Diverted Synthesis of Pyrrolidinyl Triazoles Using Organotrifluoroborate: Discovery of Potential mPTP Blockers. Org. Biomol. Chem. 2014, 12 (47), 9674–9682. 10.1039/C4OB01967A. PubMed DOI
Elkamhawy A.; Lee J.; Park B.-G.; Park I.; Pae A. N.; Roh E. J. Novel Quinazoline-Urea Analogues as Modulators for Aβ-Induced Mitochondrial Dysfunction: Design, Synthesis, and Molecular Docking Study. Eur. J. Med. Chem. 2014, 84, 466–475. 10.1016/j.ejmech.2014.07.027. PubMed DOI
Park J.; Elkamhawy A.; Hassan A. H. E.; Pae A. N.; Lee J.; Paik S.; Park B.-G.; Roh E. J. Synthesis and Evaluation of New Pyridyl/Pyrazinyl Thiourea Derivatives: Neuroprotection against Amyloid-β-Induced Toxicity. Eur. J. Med. Chem. 2017, 141, 322–334. 10.1016/j.ejmech.2017.09.043. PubMed DOI
Elkamhawy A.; Park J.; Hassan A. H. E.; Ra H.; Pae A. N.; Lee J.; Park B.-G.; Moon B.; Park H.-M.; Roh E. J. Discovery of 1-(3-(Benzyloxy)Pyridin-2-Yl)-3-(2-(Piperazin-1-Yl)Ethyl)Urea: A New Modulator for Amyloid Beta-Induced Mitochondrial Dysfunction. Eur. J. Med. Chem. 2017, 128, 56–69. 10.1016/j.ejmech.2016.12.057. PubMed DOI
Elkamhawy A.; Park J.; Hassan A. H. E.; Pae A. N.; Lee J.; Park B.-G.; Roh E. J. Synthesis and Evaluation of 2-(3-Arylureido)Pyridines and 2-(3-Arylureido)Pyrazines as Potential Modulators of Aβ-Induced Mitochondrial Dysfunction in Alzheimer’s Disease. Eur. J. Med. Chem. 2018, 144, 529–543. 10.1016/j.ejmech.2017.12.045. PubMed DOI
Elkamhawy A.; Park J.; Hassan A. H. E.; Pae A. N.; Lee J.; Paik S.; Park B.-G.; Roh E. J. Pyrazinyl Ureas Revisited: 1-(3-(Benzyloxy)Pyrazin-2-Yl)-3-(3,4-Dichlorophenyl)Urea, a New Blocker of Aβ-Induced mPTP Opening for Alzheimer’s Disease. Eur. J. Med. Chem. 2018, 157, 268–278. 10.1016/j.ejmech.2018.07.068. PubMed DOI
Guichou J.-F.; Viaud J.; Mettling C.; Subra G.; Lin Y.-L.; Chavanieu A. Structure-Based Design, Synthesis, and Biological Evaluation of Novel Inhibitors of Human Cyclophilin A. J. Med. Chem. 2006, 49 (3), 900–910. 10.1021/jm050716a. PubMed DOI
Sivandzade F.; Bhalerao A.; Cucullo L. Analysis of the Mitochondrial Membrane Potential Using the Cationic JC-1 Dye as a Sensitive Fluorescent Probe. Bio Protoc. 2019, 9 (1), e3128-e312810.21769/BioProtoc.3128. PubMed DOI PMC
Ahmed-Belkacem A.; Colliandre L.; Ahnou N.; Nevers Q.; Gelin M.; Bessin Y.; Brillet R.; Cala O.; Douguet D.; Bourguet W.; Krimm I.; Pawlotsky J.-M.; Guichou J.-F. Fragment-Based Discovery of a New Family of Non-Peptidic Small-Molecule Cyclophilin Inhibitors with Potent Antiviral Activities. Nat. Commun. 2016, 7, 12777.10.1038/ncomms12777. PubMed DOI PMC
De Simone A.; Georgiou C.; Ioannidis H.; Gupta A. A.; Juarez-Jimenez J.; Doughty-Shenton D.; Blackburn E. A.; Wear M. A.; Richards J. P.; Barlow P. N.; Carragher N.; Walkinshaw M. D.; Hulme A. N.; Michel J. A Computationally Designed Binding Mode Flip Leads to a Novel Class of Potent Tri-Vector Cyclophilin Inhibitors. Chem. Sci. 2019, 10 (2), 542–547. 10.1039/C8SC03831G. PubMed DOI PMC
Grädler U.; Schwarz D.; Blaesse M.; Leuthner B.; Johnson T. L.; Bernard F.; Jiang X.; Marx A.; Gilardone M.; Lemoine H.; Roche D.; Jorand-Lebrun C. Discovery of Novel Cyclophilin D Inhibitors Starting from Three Dimensional Fragments with Millimolar Potencies. Bioorg. Med. Chem. Lett. 2019, 29 (23), 126717.10.1016/j.bmcl.2019.126717. PubMed DOI PMC
Zemanova L.; Vaskova M.; Schmidt M.; Roubalova J.; Haleckova A.; Benek O.; Musilek K. RNase T1 Refolding Assay for Determining Mitochondrial Cyclophilin D Activity: A Novel In Vitro Method Applicable in Drug Research and Discovery. Biochemistry 2020, 59 (17), 1680–1687. 10.1021/acs.biochem.9b01025. PubMed DOI
Gao K.; Oerlemans R.; Groves M. R. Theory and Applications of Differential Scanning Fluorimetry in Early-Stage Drug Discovery. Biophys. Rev. 2020, 12 (1), 85–104. 10.1007/s12551-020-00619-2. PubMed DOI PMC
Endlicher R.; Drahota Z.; Červinková Z. Modification of Calcium Retention Capacity of Rat Liver Mitochondria by Phosphate and Tert-Butyl Hydroperoxide. Physiol. Res. 2019, 68 (1), 59–65. 10.33549/physiolres.933912. PubMed DOI
Ali S. S.; Marcondes M.-C. G.; Bajova H.; Dugan L. L.; Conti B. Metabolic Depression and Increased Reactive Oxygen Species Production by Isolated Mitochondria at Moderately Lower Temperatures*. J. Biol. Chem. 2010, 285 (42), 32522–32528. 10.1074/jbc.M110.155432. PubMed DOI PMC