Cisplatin enhances cell stiffness and decreases invasiveness rate in prostate cancer cells by actin accumulation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30733487
PubMed Central
PMC6367361
DOI
10.1038/s41598-018-38199-7
PII: 10.1038/s41598-018-38199-7
Knihovny.cz E-zdroje
- MeSH
- aktiny metabolismus MeSH
- buněčný převod mechanických signálů * MeSH
- cisplatina farmakologie MeSH
- hojení ran MeSH
- invazivní růst nádoru MeSH
- lidé MeSH
- nádorové buňky kultivované MeSH
- nádory prostaty farmakoterapie patologie MeSH
- proliferace buněk * MeSH
- protinádorové látky farmakologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny MeSH
- cisplatina MeSH
- protinádorové látky MeSH
We focused on the biomechanical and morphological characteristics of prostate cancer cells and their changes resulting from the effect of docetaxel, cisplatin, and long-term zinc supplementation. Cell population surviving the treatment was characterized as follows: cell stiffness was assessed by atomic force microscopy, cell motility and invasion capacity were determined by colony forming assay, wound healing assay, coherence-controlled holographic microscopy, and real-time cell analysis. Cells of metastatic origin exhibited lower height than cells derived from the primary tumour. Cell dry mass and CAV1 gene expression followed similar trends as cell stiffness. Docetaxel- and cisplatin-surviving cells had higher stiffness, and decreased motility and invasive potential as compared to non-treated cells. This effect was not observed in zinc(II)-treated cells. We presume that cell stiffness changes may represent an important overlooked effect of cisplatin-based anti-cancer drugs. Atomic force microscopy and confocal microscopy data images used in our study are available for download in the Zenodo repository ( https://zenodo.org/ , Digital Object Identifiers:10.5281/zenodo.1494935).
Central European Institute of Technology Masaryk University Kamenice 5 CZ 625 00 Brno Czech Republic
Zobrazit více v PubMed
Vahabi S, Nazemi Salman B, Javanmard A. Atomic force microscopy application in biological research: a review study. Iran J Med Sci. 2013;38:76–83. PubMed PMC
Sundararajan S, Bhushan B. Development of AFM-based techniques to measure mechanical properties of nanoscale structures. Sensors and Actuators a-Physical. 2002;101:338–351. doi: 10.1016/S0924-4247(02)00268-6. DOI
Pesl M, et al. Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing. Biosensors & Bioelectronics. 2016;85:751–757. doi: 10.1016/j.bios.2016.05.073. PubMed DOI
Sharma S, et al. Correlative nanomechanical profiling with super-resolution F-actin imaging reveals novel insights into mechanisms of cisplatin resistance in ovarian cancer cells. Nanomedicine-Nanotechnology Biology and Medicine. 2012;8:757–766. doi: 10.1016/j.nano.2011.09.015. PubMed DOI
Wang J, et al. Atomic force microscope study of tumor cell membranes following treatment with anti-cancer drugs. Biosens Bioelectron. 2009;25:721–727. doi: 10.1016/j.bios.2009.08.011. PubMed DOI
Zhang L, Yang F, Cai JY, Yang PH, Liang ZH. In-situ detection of resveratrol inhibition effect on epidermal growth factor receptor of living MCF-7 cells by Atomic Force Microscopy. Biosensors & Bioelectronics. 2014;56:271–277. doi: 10.1016/j.bios.2014.01.024. PubMed DOI
Nikolaev NI, Mueller T, Williams DJ, Liu Y. Changes in the stiffness of human mesenchymal stem cells with the progress of cell death as measured by atomic force microscopy. Journal of Biomechanics. 2014;47:625–630. doi: 10.1016/j.jbiomech.2013.12.004. PubMed DOI
Thomas, G., Burnham, N. A., Camesano, T. A., Wen, Q. Measuring the mechanical properties of living cells using atomic force microscopy. J Vis Exp, (2013). PubMed PMC
Luo Q, Kuang DD, Zhang BY, Song GB. Cell stiffness determined by atomic force microscopy and its correlation with cell motility. Biochimica Et Biophysica Acta-General Subjects. 2016;1860:1953–1960. doi: 10.1016/j.bbagen.2016.06.010. PubMed DOI
Cross SE, Jin YS, Rao J, Gimzewski JK. Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol. 2007;2:780–783. doi: 10.1038/nnano.2007.388. PubMed DOI
Cross, S. E. et al. AFM-based analysis of human metastatic cancer cells. Nanotechnology19 (2008). PubMed
Rotsch C, Radmacher M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study. Biophysical Journal. 2000;78:520–535. doi: 10.1016/S0006-3495(00)76614-8. PubMed DOI PMC
Osborne LD, et al. TGF-beta regulates LARG and GEF-H1 during EMT to affect stiffening response to force and cell invasion. Molecular Biology of the Cell. 2014;25:3528–3540. doi: 10.1091/mbc.e14-05-1015. PubMed DOI PMC
Lam WA, Rosenbluth MJ, Fletcher DA. Chemotherapy exposure increases leukemia cell stiffness. Blood. 2007;109:3505–3508. doi: 10.1182/blood-2006-08-043570. PubMed DOI PMC
Chivukula VK, Krog BL, Nauseef JT, Henry MD, Vigmostad SC. Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study. Cell Health Cytoskelet. 2015;7:25–35. PubMed PMC
Gumulec J, et al. Insight to Physiology and Pathology of Zinc(II) Ions and Their Actions in Breast and Prostate Carcinoma. Current Medicinal Chemistry. 2011;18:5041–5051. doi: 10.2174/092986711797636126. PubMed DOI
Franklin RB, Costello LC. The Important Role of the Apoptotic Effects of Zinc in the Development of Cancers. Journal of Cellular Biochemistry. 2009;106:750–757. doi: 10.1002/jcb.22049. PubMed DOI PMC
Kratochvilova M, et al. Amino Acid Profiling of Zinc Resistant Prostate Cancer Cell Lines: Associations With Cancer Progression. Prostate. 2017;77:604–616. doi: 10.1002/pros.23304. PubMed DOI
Herbst RS, Khuri FR. Mode of action of docetaxel - a basis for combination with novel anticancer agents. Cancer Treatment Reviews. 2003;29:407–415. doi: 10.1016/S0305-7372(03)00097-5. PubMed DOI
Kopemaier P, Muhlhausen SK, Changes IN. The Cytoskeleton Pattern of Tumor-Cells by Cisplatin Invitro. Chemico-Biological Interactions. 1992;82:295–316. doi: 10.1016/0009-2797(92)90002-3. PubMed DOI
Boekelheide K, Arcila ME, Eveleth J. Cis-diamminedichloroplatinum (ii) (cisplatin) alters microtubule assembly dynamics. Toxicology and Applied Pharmacology. 1992;116:146–151. doi: 10.1016/0041-008X(92)90156-M. PubMed DOI
Lin HH, et al. Mechanical phenotype of cancer cells: cell softening and loss of stiffness sensing. Oncotarget. 2015;6:20946–20958. doi: 10.18632/oncotarget.4173. PubMed DOI PMC
Yang B, Radel C, Hughes D, Kelemen S, Rizzo V. p190 RhoGTPase-activating protein links the beta1 integrin/caveolin-1 mechanosignaling complex to RhoA and actin remodeling. Arterioscler Thromb Vasc Biol. 2011;31:376–383. doi: 10.1161/ATVBAHA.110.217794. PubMed DOI PMC
Sharrard RM, Maitland NJ. Regulation of protein kinase B activity by PTEN and SHIP2 in human prostate-derived cell lines. Cell Signal. 2007;19:129–138. doi: 10.1016/j.cellsig.2006.05.029. PubMed DOI
Schmieg FI, Simmons DT. Characterization of the in vitro interaction between SV40 T antigen andp53: mapping the p53 binding site. Virology. 1988;164:132–140. doi: 10.1016/0042-6822(88)90628-9. PubMed DOI
Gumulec J, et al. Cisplatin-resistant prostate cancer model: Differences in antioxidant system, apoptosis and cell cycle. Int J Oncol. 2014;44:923–933. doi: 10.3892/ijo.2013.2223. PubMed DOI
Berthon, P. et al. Androgens are not a direct requirement for the proliferation of human prostatic epithelium in vitro73, 910–916 (1997). PubMed
Mitchell S, Abel P, Ware M, Stamp G, Lalani EN. Phenotypic and genotypic characterization of commonly used human prostatic cell lines. Bju International. 2000;85:932–944. doi: 10.1046/j.1464-410x.2000.00606.x. PubMed DOI
Fraser M, et al. PTEN deletion in prostate cancer cells does not associate with loss of RAD51 function: implications for radiotherapy and chemotherapy. Clin Cancer Res. 2012;18:1015–1027. doi: 10.1158/1078-0432.CCR-11-2189. PubMed DOI PMC
Skjoth IH, Issinger OG. Profiling of signaling molecules in four different human prostate carcinoma cell lines before and after induction of apoptosis. Int J Oncol. 2006;28:217–229. PubMed
Gebaeck T, Schulz MMP, Koumoutsakos P, Detmar M. TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. Biotechniques. 2009;46:265–+. doi: 10.2144/000113083. PubMed DOI
Prescher JA, Bertozzi CR. Chemistry in living systems. Nat Chem Biol. 2005;1:13–21. doi: 10.1038/nchembio0605-13. PubMed DOI
Wayne, R. Interference Microscopy. In: Light and Video Microscopy (ed^(eds Wayne, R.). Elsevier Inc (2014).
Bastatas L, et al. AFM nano-mechanics and calcium dynamics of prostate cancer cells with distinct metastatic potential. Biochimica Et Biophysica Acta-General Subjects. 2012;1820:1111–1120. doi: 10.1016/j.bbagen.2012.02.006. PubMed DOI
Denais, C., Lammerding, J. Nuclear Mechanics in Cancer. In: Cancer Biology and the Nuclear Envelope: Recent Advances May Elucidate Past Paradoxes (ed^(eds Schirmer, E. C., DeLasHeras, J. I.) (2014). PubMed PMC
Rao KMK, Cohen HJ. Actin cytoskeletal network inaging and cancer . Mutation Research. 1991;256:139–148. doi: 10.1016/0921-8734(91)90007-X. PubMed DOI
Thoumine O, Ott A. Comparison of the mechanical properties of normal and transformed fibroblasts. Biorheology. 1997;34:309–326. doi: 10.3233/BIR-1997-344-505. PubMed DOI
Lekka M, et al. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. European Biophysics Journal with Biophysics Letters. 1999;28:312–316. doi: 10.1007/s002490050213. PubMed DOI
Alibert C, Goud B, Manneville JB. Are cancer cells really softer than normal cells? Biology of the Cell. 2017;109:167–189. doi: 10.1111/boc.201600078. PubMed DOI
Faria EC, et al. Measurement of elastic properties of prostate cancer cells using AFM. Analyst. 2008;133:1498–1500. doi: 10.1039/b803355b. PubMed DOI
Zhu M-L, Kyprianou N. Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells. The FASEB Journal. 2010;24:769–777. doi: 10.1096/fj.09-136994. PubMed DOI PMC
Wu HW, Kuhn T, Moy VT. Mechanical properties of l929 cells measured by atomic force microscopy: Effects of anticytoskeletal drugs and membrane crosslinking. Scanning. 1998;20:389–397. doi: 10.1002/sca.1998.4950200504. PubMed DOI
Cancer cell viscoelasticity measurement by quantitative phase and flow stress induction
The Quantitative-Phase Dynamics of Apoptosis and Lytic Cell Death