Cisplatin enhances cell stiffness and decreases invasiveness rate in prostate cancer cells by actin accumulation

. 2019 Feb 07 ; 9 (1) : 1660. [epub] 20190207

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30733487
Odkazy

PubMed 30733487
PubMed Central PMC6367361
DOI 10.1038/s41598-018-38199-7
PII: 10.1038/s41598-018-38199-7
Knihovny.cz E-zdroje

We focused on the biomechanical and morphological characteristics of prostate cancer cells and their changes resulting from the effect of docetaxel, cisplatin, and long-term zinc supplementation. Cell population surviving the treatment was characterized as follows: cell stiffness was assessed by atomic force microscopy, cell motility and invasion capacity were determined by colony forming assay, wound healing assay, coherence-controlled holographic microscopy, and real-time cell analysis. Cells of metastatic origin exhibited lower height than cells derived from the primary tumour. Cell dry mass and CAV1 gene expression followed similar trends as cell stiffness. Docetaxel- and cisplatin-surviving cells had higher stiffness, and decreased motility and invasive potential as compared to non-treated cells. This effect was not observed in zinc(II)-treated cells. We presume that cell stiffness changes may represent an important overlooked effect of cisplatin-based anti-cancer drugs. Atomic force microscopy and confocal microscopy data images used in our study are available for download in the Zenodo repository ( https://zenodo.org/ , Digital Object Identifiers:10.5281/zenodo.1494935).

Erratum v

PubMed

Zobrazit více v PubMed

Vahabi S, Nazemi Salman B, Javanmard A. Atomic force microscopy application in biological research: a review study. Iran J Med Sci. 2013;38:76–83. PubMed PMC

Sundararajan S, Bhushan B. Development of AFM-based techniques to measure mechanical properties of nanoscale structures. Sensors and Actuators a-Physical. 2002;101:338–351. doi: 10.1016/S0924-4247(02)00268-6. DOI

Pesl M, et al. Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing. Biosensors & Bioelectronics. 2016;85:751–757. doi: 10.1016/j.bios.2016.05.073. PubMed DOI

Sharma S, et al. Correlative nanomechanical profiling with super-resolution F-actin imaging reveals novel insights into mechanisms of cisplatin resistance in ovarian cancer cells. Nanomedicine-Nanotechnology Biology and Medicine. 2012;8:757–766. doi: 10.1016/j.nano.2011.09.015. PubMed DOI

Wang J, et al. Atomic force microscope study of tumor cell membranes following treatment with anti-cancer drugs. Biosens Bioelectron. 2009;25:721–727. doi: 10.1016/j.bios.2009.08.011. PubMed DOI

Zhang L, Yang F, Cai JY, Yang PH, Liang ZH. In-situ detection of resveratrol inhibition effect on epidermal growth factor receptor of living MCF-7 cells by Atomic Force Microscopy. Biosensors & Bioelectronics. 2014;56:271–277. doi: 10.1016/j.bios.2014.01.024. PubMed DOI

Nikolaev NI, Mueller T, Williams DJ, Liu Y. Changes in the stiffness of human mesenchymal stem cells with the progress of cell death as measured by atomic force microscopy. Journal of Biomechanics. 2014;47:625–630. doi: 10.1016/j.jbiomech.2013.12.004. PubMed DOI

Thomas, G., Burnham, N. A., Camesano, T. A., Wen, Q. Measuring the mechanical properties of living cells using atomic force microscopy. J Vis Exp, (2013). PubMed PMC

Luo Q, Kuang DD, Zhang BY, Song GB. Cell stiffness determined by atomic force microscopy and its correlation with cell motility. Biochimica Et Biophysica Acta-General Subjects. 2016;1860:1953–1960. doi: 10.1016/j.bbagen.2016.06.010. PubMed DOI

Cross SE, Jin YS, Rao J, Gimzewski JK. Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol. 2007;2:780–783. doi: 10.1038/nnano.2007.388. PubMed DOI

Cross, S. E. et al. AFM-based analysis of human metastatic cancer cells. Nanotechnology19 (2008). PubMed

Rotsch C, Radmacher M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study. Biophysical Journal. 2000;78:520–535. doi: 10.1016/S0006-3495(00)76614-8. PubMed DOI PMC

Osborne LD, et al. TGF-beta regulates LARG and GEF-H1 during EMT to affect stiffening response to force and cell invasion. Molecular Biology of the Cell. 2014;25:3528–3540. doi: 10.1091/mbc.e14-05-1015. PubMed DOI PMC

Lam WA, Rosenbluth MJ, Fletcher DA. Chemotherapy exposure increases leukemia cell stiffness. Blood. 2007;109:3505–3508. doi: 10.1182/blood-2006-08-043570. PubMed DOI PMC

Chivukula VK, Krog BL, Nauseef JT, Henry MD, Vigmostad SC. Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study. Cell Health Cytoskelet. 2015;7:25–35. PubMed PMC

Gumulec J, et al. Insight to Physiology and Pathology of Zinc(II) Ions and Their Actions in Breast and Prostate Carcinoma. Current Medicinal Chemistry. 2011;18:5041–5051. doi: 10.2174/092986711797636126. PubMed DOI

Franklin RB, Costello LC. The Important Role of the Apoptotic Effects of Zinc in the Development of Cancers. Journal of Cellular Biochemistry. 2009;106:750–757. doi: 10.1002/jcb.22049. PubMed DOI PMC

Kratochvilova M, et al. Amino Acid Profiling of Zinc Resistant Prostate Cancer Cell Lines: Associations With Cancer Progression. Prostate. 2017;77:604–616. doi: 10.1002/pros.23304. PubMed DOI

Herbst RS, Khuri FR. Mode of action of docetaxel - a basis for combination with novel anticancer agents. Cancer Treatment Reviews. 2003;29:407–415. doi: 10.1016/S0305-7372(03)00097-5. PubMed DOI

Kopemaier P, Muhlhausen SK, Changes IN. The Cytoskeleton Pattern of Tumor-Cells by Cisplatin Invitro. Chemico-Biological Interactions. 1992;82:295–316. doi: 10.1016/0009-2797(92)90002-3. PubMed DOI

Boekelheide K, Arcila ME, Eveleth J. Cis-diamminedichloroplatinum (ii) (cisplatin) alters microtubule assembly dynamics. Toxicology and Applied Pharmacology. 1992;116:146–151. doi: 10.1016/0041-008X(92)90156-M. PubMed DOI

Lin HH, et al. Mechanical phenotype of cancer cells: cell softening and loss of stiffness sensing. Oncotarget. 2015;6:20946–20958. doi: 10.18632/oncotarget.4173. PubMed DOI PMC

Yang B, Radel C, Hughes D, Kelemen S, Rizzo V. p190 RhoGTPase-activating protein links the beta1 integrin/caveolin-1 mechanosignaling complex to RhoA and actin remodeling. Arterioscler Thromb Vasc Biol. 2011;31:376–383. doi: 10.1161/ATVBAHA.110.217794. PubMed DOI PMC

Sharrard RM, Maitland NJ. Regulation of protein kinase B activity by PTEN and SHIP2 in human prostate-derived cell lines. Cell Signal. 2007;19:129–138. doi: 10.1016/j.cellsig.2006.05.029. PubMed DOI

Schmieg FI, Simmons DT. Characterization of the in vitro interaction between SV40 T antigen andp53: mapping the p53 binding site. Virology. 1988;164:132–140. doi: 10.1016/0042-6822(88)90628-9. PubMed DOI

Gumulec J, et al. Cisplatin-resistant prostate cancer model: Differences in antioxidant system, apoptosis and cell cycle. Int J Oncol. 2014;44:923–933. doi: 10.3892/ijo.2013.2223. PubMed DOI

Berthon, P. et al. Androgens are not a direct requirement for the proliferation of human prostatic epithelium in vitro73, 910–916 (1997). PubMed

Mitchell S, Abel P, Ware M, Stamp G, Lalani EN. Phenotypic and genotypic characterization of commonly used human prostatic cell lines. Bju International. 2000;85:932–944. doi: 10.1046/j.1464-410x.2000.00606.x. PubMed DOI

Fraser M, et al. PTEN deletion in prostate cancer cells does not associate with loss of RAD51 function: implications for radiotherapy and chemotherapy. Clin Cancer Res. 2012;18:1015–1027. doi: 10.1158/1078-0432.CCR-11-2189. PubMed DOI PMC

Skjoth IH, Issinger OG. Profiling of signaling molecules in four different human prostate carcinoma cell lines before and after induction of apoptosis. Int J Oncol. 2006;28:217–229. PubMed

Gebaeck T, Schulz MMP, Koumoutsakos P, Detmar M. TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. Biotechniques. 2009;46:265–+. doi: 10.2144/000113083. PubMed DOI

Prescher JA, Bertozzi CR. Chemistry in living systems. Nat Chem Biol. 2005;1:13–21. doi: 10.1038/nchembio0605-13. PubMed DOI

Wayne, R. Interference Microscopy. In: Light and Video Microscopy (ed^(eds Wayne, R.). Elsevier Inc (2014).

Bastatas L, et al. AFM nano-mechanics and calcium dynamics of prostate cancer cells with distinct metastatic potential. Biochimica Et Biophysica Acta-General Subjects. 2012;1820:1111–1120. doi: 10.1016/j.bbagen.2012.02.006. PubMed DOI

Denais, C., Lammerding, J. Nuclear Mechanics in Cancer. In: Cancer Biology and the Nuclear Envelope: Recent Advances May Elucidate Past Paradoxes (ed^(eds Schirmer, E. C., DeLasHeras, J. I.) (2014). PubMed PMC

Rao KMK, Cohen HJ. Actin cytoskeletal network inaging and cancer . Mutation Research. 1991;256:139–148. doi: 10.1016/0921-8734(91)90007-X. PubMed DOI

Thoumine O, Ott A. Comparison of the mechanical properties of normal and transformed fibroblasts. Biorheology. 1997;34:309–326. doi: 10.3233/BIR-1997-344-505. PubMed DOI

Lekka M, et al. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. European Biophysics Journal with Biophysics Letters. 1999;28:312–316. doi: 10.1007/s002490050213. PubMed DOI

Alibert C, Goud B, Manneville JB. Are cancer cells really softer than normal cells? Biology of the Cell. 2017;109:167–189. doi: 10.1111/boc.201600078. PubMed DOI

Faria EC, et al. Measurement of elastic properties of prostate cancer cells using AFM. Analyst. 2008;133:1498–1500. doi: 10.1039/b803355b. PubMed DOI

Zhu M-L, Kyprianou N. Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells. The FASEB Journal. 2010;24:769–777. doi: 10.1096/fj.09-136994. PubMed DOI PMC

Wu HW, Kuhn T, Moy VT. Mechanical properties of l929 cells measured by atomic force microscopy: Effects of anticytoskeletal drugs and membrane crosslinking. Scanning. 1998;20:389–397. doi: 10.1002/sca.1998.4950200504. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...